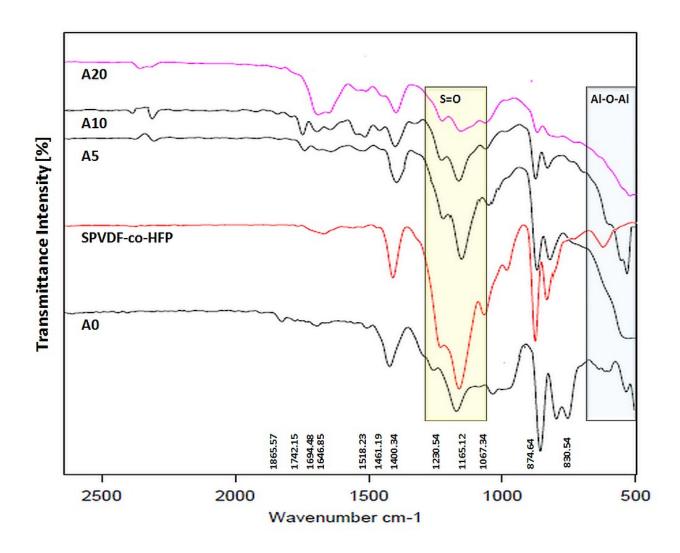
Electronic Supplementary Material (ESI) for RSC Advances. This journal is © The Royal Society of Chemistry 2016

Supporting Information


Nanocomposite membrane composed of nano-alumina within sulfonated PVDF-co-HFP/Nafion blend as separating barrier in single chambered microbial fuel cell

Vikash Kumar, Piyush Kumar, Arpita Nandy, Patit P. Kundu*

*Advanced Polymer Laboratory, Department of Polymer Science and Technology, University of Calcutta, 92, A.P.C Road, Kolkata – 700009, India.

*Corresponding author Tel.: +91 2350 1397; fax: +91 2352 5106. E-mail address: ppk923@yahoo.com (P.P. Kundu).

Fig S1. FT-IR of membranes

 $Fig~S2.~Nano-Al_2O_3~doped~sulfonated~PVDF-co-HFP/Nafion~nanocomposite~membranes$

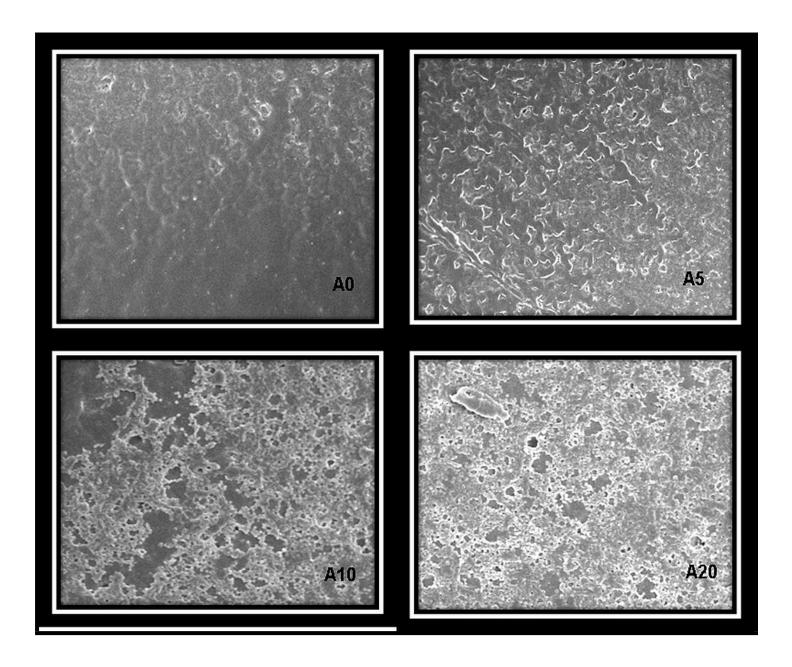


Fig S3. Cell performance at different resistances

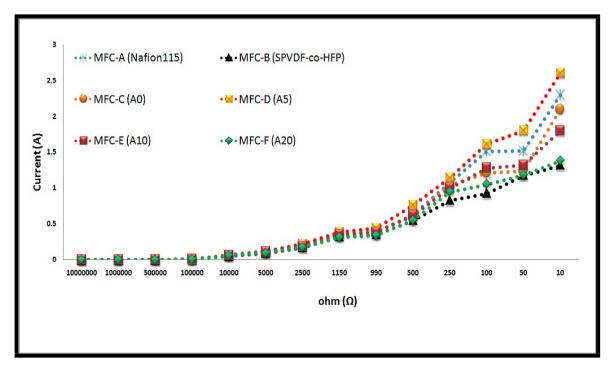
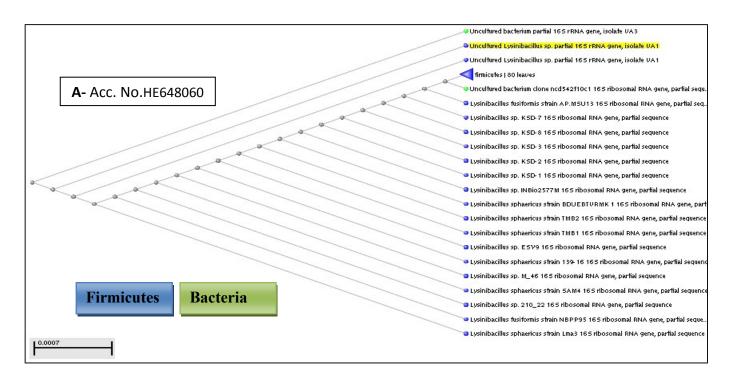


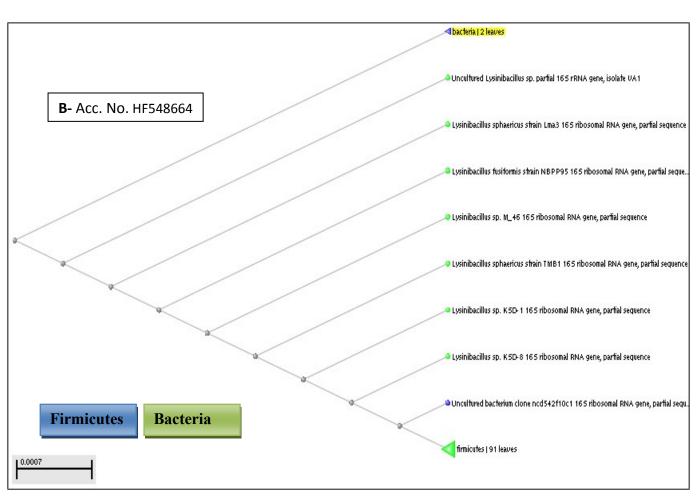
Table T1. A comparative study of MFCs in terms of power generation using different membranes

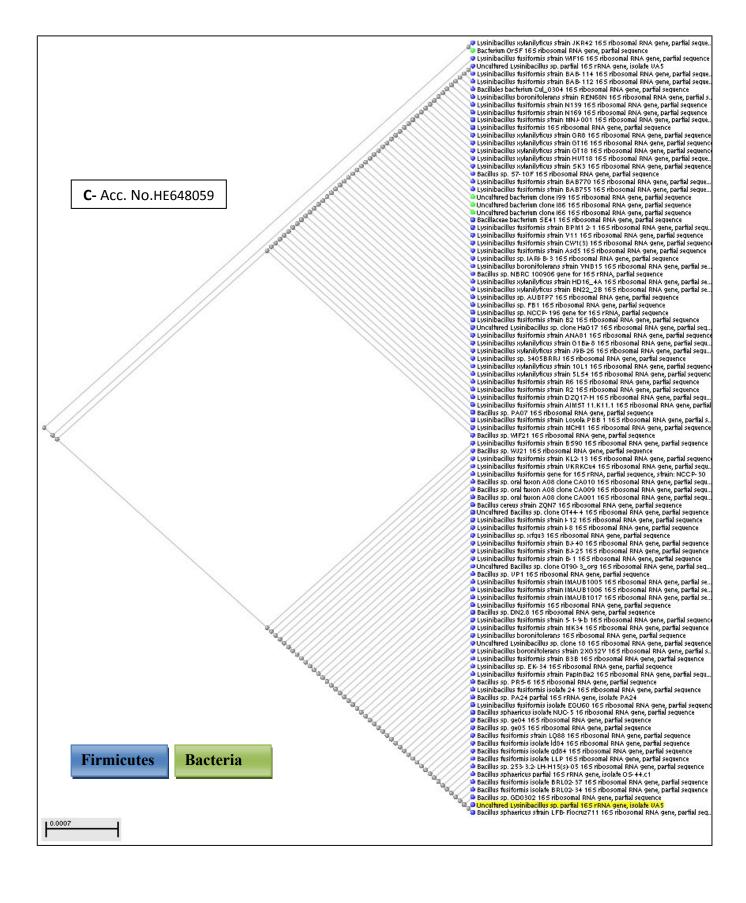
MFC Type	Electrodes	<u>Used</u>	Maximum Power	References
		Membranes	<u>density</u>	
Dual chamber with oxygen flow at cathode	Carbon papers	Nafion 117	600 mWm ⁻²	1
	Carbon Brush	Glass fibers	240±22 mWm ⁻²	2
Air cathode MFC	Carbon Mesh	Coated Glass fibers	$230 \pm 3.3 \text{ mWm}^{-2}$	
Air cathode MFC	Carbon papers	Nafion 117	239.4 mWm ⁻²	3
Air cathode MFC	Carbon papers	SPEEK/PES	170 mWm ⁻²	4
Dual chamber	Graphite Plates	Fe3O4/PES nanocomposite	20 mWm ⁻²	5
Single chamber (tubular) MFC	Carbon cloths	GO-PVA-STA composite	139 mWm ⁻²	6
Single chambered MFC	Carbon cloths	J-cloth	$280 \pm 6 \text{ mWm}^{-2}$	7
Air cathode MFC	Carbon cloths	Nano Al ₂ O ₃ doped SPVDF- co-HFP/ Nafion nanocomposite	$541.52 \pm 27 \text{ mWm}^{-}$	Present study

References:

- 1. Prakash GKS, Viva FA, Bretschger O, Yang B, El-Naggar M, Nealson K. Inoculation procedures and characterization of membrane electrode assemblies for microbial fuel cells. J Power Sources 2010; 195:111–7.
- 2. Hays S, Zhang F, Logan BE. Performance of two different types of anodes in membrane electrode assembly microbial fuel cells for power generation from domestic wastewater. J Power Sources 2011; 196:8293–300.
- 3. Lu N, Zhou SG, Zhuang L, Zhang JT, Ni JR. Electricity generation from starch processing waste-water using microbial fuel cell technology. Biochem Eng J 2009; 43:246–51.
- 4. Lim, S. S.; Daud, W. R. W.; Md Jahim, J.; Ghasemi, M.; Chong, P. S.; Ismail, M. Sulfonated Poly(ether Ether Ketone)/poly(ether Sulfone) Composite Membranes as an Alternative Proton Exchange Membrane in Microbial Fuel Cells. International Journal of Hydrogen Energy 2012, *37*, 11409–11424.
- 5. Rahimnejad, M.; Ghasemi, M.; Najafpour, G. D.; Ismail, M.; Mohammad, A. W.; Ghoreyshi, A. A.; Hassan, S. H. A. Synthesis, Characterization and Application Studies of Self-made Fe3O4/PES Nanocomposite Membranes in Microbial Fuel Cell. Electrochimica Acta 2012, *85*, 700–706.
- 6. Santimoy Khilari, Soumya Pandit, Makarand M. Ghangrekar, Debabrata Pradhan, Debabrata Das, Graphene oxide impregnated PVA-STA composite polymer electrolyte membrane separator for power generation in single chambered Microbial Fuel Cell. Industrial & Engineering Chemistry Research 2013, 52, 11597–11606.
- 7. Fang Zhang, Yongtae Ahn, Bruce E. Logan, Treating refinery wastewaters in microbial fuel cells using separator electrode assembly or spaced electrode configurations. Bioresource Technology 2014, 152, 46–52


Fig S4. 16S rDNA sequences of employed microbes.


		Lysinibacillus sp. partial emb[HE648059.1] Length			
Range	1: 1 to	320 GenBank Graphics		▼ Next	Match 🛕 Previous Match
Score 584 bi	ts(31		lentities 20/320(100%)	Gaps 0/320(0%)	Strand Plus/Plus
Query	1	CTCAGATTTATTATTCGCCACG	WGRGAGCTTGCTCCTTTGAG	CGTTAGCGGCGGACGGGTG	60
Sbjct	1	CTCAGATTTATTATTCGCCACG	WGRGAGCTTGCTCCTTTGAG	CGTTAGCGGCGGACGGGTG	60
Query	61	AGTAACACGTGGGCAACCTACC	CTATAGTTTGGGATAACTC	CGGGAAACCGGGGCTAATA	120
Sbjct	61	AGTAACACGTGGGCAACCTACC	CTATAGTTTGGGATAACTC	CGGGAAACCGGGGCTAATA	120
Query	121	CCGAATAATCTCTTTTGCTTCA	TGGTGAAAGACTGAAAGAC	GGTTTCGGCTGTCGCTATA	180
Sbjct	121	CCGAATAATCTCTTTTGCTTCA	TGGTGAAAGACTGAAAGAC	GTTTCGGCTGTCGCTATA	180
Query	181	GGATGGGCCCGCGGCGCATTAG	CTAGTTGGTGAGGTAACGG	CTCACCAAGGCGACGATGC	240
Sbjct	181	GGATGGGCCCGCGCGCATTAG	CTAGTTGGTGAGGTAACGG	CTCACCAAGGCGACGATGC	240
Query	241	GTAGCCGACCTGAGAGGGTGAT	CGGCCACACTGGGACTGAGA	ACACGGCCCAGACTCCTAC	300
Sbjct	241	GTAGCCGACCTGAGAGGGTGAT	CGGCCACACTGGGACTGAG	ACACGGCCCAGACTCCTAC	300
Query	301	GGGAGGCAGCAGTGGGACTC	320		
Sbict	301	GGGAGGCAGCAGTGGGACTC	320		


	52016200		ength: 319 Number of Ma			
				▼ Next Match ▲ Previous Match Gaps Strand		
575 bi	its(31	1144. A 1144.	319/319(100%)	0/319(0%)	Plus/Plus	
Query	1	CACTTACCACTCTSGAYC	AGCAGWGGGAAGCTTGCTCCT	TTGACGTTAGCGGCGGACG	GG 60	
Sbjct	1	CACTTACCACTCTSGAYC	AGCAGWGGGAAGCTTGCTCCT	TTGACGTTAGCGGCGGACG	[] GG 60	
Query	61	TGAGTAACACGTGGGCAA	CCTACCTTATAGTTTGGGATA	ACTCCGGGAAACCGGGGCT	AA 120	
Sbjct	61	TGAGTAACACGTGGGCAA	CCTACCTTATAGTTTGGGATA	ACTCCGGGAAACCGGGGCT	AA 120	
Query	121	TACCGAATAATCTRTTTC	ACCTCATGGTGAAATATTGAA	AGACGGTTTCGGCTGTCGC	TA 180	
Sbjct	121	TACCGAATAATCTRTTTC	ACCTCATGGTGAAATATTGAA	AGACGGTTTCGGCTGTCGC	TA 180	
Query	181	TAGGATGGGCCCGCGGCG	CATTAGCTAGTTGGTGAGGTA	ACGGCTCACCAAGGCGACG	AT 240	
Sbjct	181	TAGGATGGGCCCGCGGCG	CATTAGCTAGTTGGTGAGGTA	ACGGCTCACCAAGGCGACG	AT 240	
Query	241	GCGTAGCCGACCTGAGAG	GGTGATCGGCCACACTGGGAC	TGAGACACGGCCCAGACTC	CT 300	
Sbjct	241	GCGTAGCCGACCTGAGAG	GGTGATCGGCCACACTGGGAC	TGAGACACGGCCCAGACTC	CT 300	
Query	301	ACGGGAGGCAGCAGTGGG	A 319			
Sbjct	301	ACGGGAGGCAGCAGTGGG	A 319			

Bownload v GenBank Graphics Uncultured bacterium partial 16S rRNA gene, isolate VA3 Sequence ID: emb|HF548664.1| Length: 322 Number of Matches: 1 Range 1: 1 to 322 GenBank Graphics V Next Match 🛦 Previous Match Gaps 7e-160 322/322(100%) 0/322(0%) Plus/Plus 573 bits(310) ATGCAGATTGCCTCGCTCWGATCGCAGAGRGARCTTGCTCCTTTGACGTTAGCGGCGGAC 60 Query 1 Sbjct 1 Query 61 Sbjct 61 Query 121 TAATACCGAATAATCTRTTTCACCTCATGGTGAAATATTGAAAGACGGTTTCGGCTGTCG 180 TAATACCGAATAATCTRTTTCACCTCATGGTGAAATATTGAAAGACGGTTTCGGCTGTCG Sbjct 121 CTATAGGATGGGCCCGCGCGCATTAGCTAGTTGGTGAGGTAACGGCTCACCAAGGCGAC Query 181 240 Sbjct 181 Query 241 GATGCGTAGCCGACCTGAGAGGGTGATCGGCCACACTGGGACTGAGACACGGCCCAGACT 300 GATGCGTAGCCGACCTGAGAGGGTGATCGGCCACACTGGGACTGAGACACGGCCCAGACT 300 Sbjct 241 Query 301 CCTACGGGAGGCAGCAGTGGGA 322 CCTACGGGAGGCAGCAGTGGGA 322 Sbjct 301

Phylogenetic tree based on 16S rDNA sequences of *Lysinibacillus species* (A,B and C) with closely related species using neighbor joining alignment

20.00 μA

10.00 μA

10.00 μA

256.6mV & -7.7μA

236.7mV & -10.7μA

Fig S5. Cyclic voltammogramms of microbes

Electron transfer from biofilm to electrode indicated microbial oxidation, whereas reduction peaks corresponded towards microbial reduction (charge transfer from electrode to biofilm). This redox activity was attributed to the microbial cell surface proteins that evidently ensured its biocatalytic activity, resulting in subsequent substrate utilization from the employed *firmicutes* on repeated potential cycling.

Vf (V vs. Ref.)

1.000 V

-20.00 μA -1.000 V

Fig S6. SEM images of control (Left) and the formed biofilm colonies on the electrodes

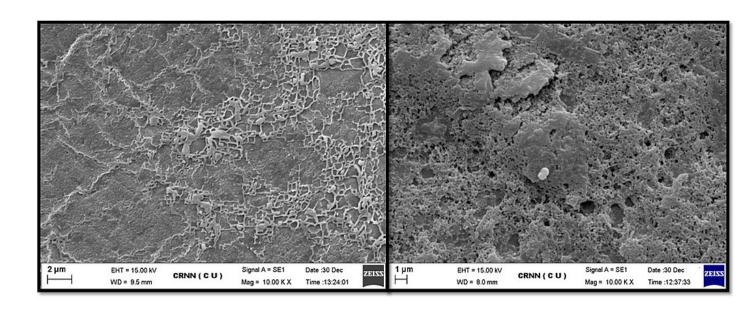
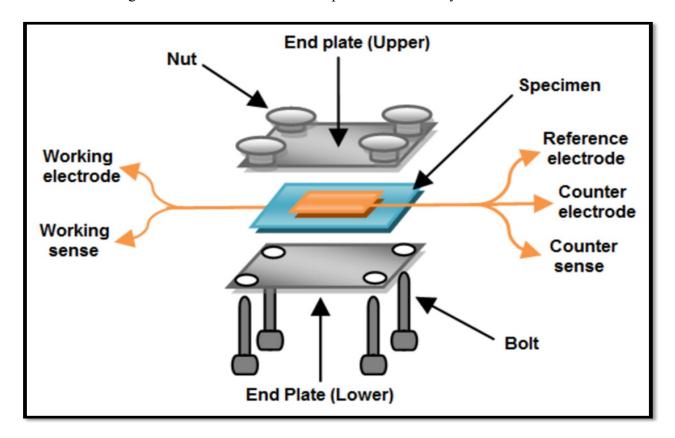



Fig S7. Schematic illustration for proton conductivity measurement.

Cost comparisons

Membranes	Costs (USD)
Nafion	$\sim 1.8 - 2.3 $ \$/cm ²
AEMs(e.g., AMI 7001)	$\sim 1.2 - 1.6$ \$/cm ²
CEMs(e.g., CMI 7000)	$\sim 0.6 - 1.2 $ \$/cm ²
Glass fiber	$\sim 0.34 \$ / 100 \text{cm}^2$
Wiper J-cloth	$\sim 0.31 \$ / 100 \text{cm}^2$
Al ₂ O ₃ incorporated nanocomposite membrane	~0.8\$/100cm ²