Oligonucleotide length- and probe number-dependent assembly of gold nanoparticle on triangular DNA origami

Ying Wang,^{ab} Long Zou,^{ab} Jing Xiao,^{ab} Yan Qiao*^{ab} and Zhisong Lu*^{ab}

a. Chongqing Key Laboratory for Advanced Materials & Technologies of Clean Energies, Southwest University,

1 Tiansheng Road, Chongqing 400715, P.R. China;

b. Institute for Clean Energy & Advanced Materials, Faculty of Materials & Energy, Southwest University, 1

Tiansheng Road, Chongqing 400715, P.R. China.

*Corresponding author: Yan Qiao, E-mail: yanqiao@swu.edu.cn; Fax: 86-23-68253204; Tel: 86-23-68254842 or Zhisong Lu, E-mail: zslu@swu.edu.cn; Fax: 86-23-68253204; Tel: 86-23-68254732.

1. Materials

1.1 Abbreviations

TAE: tris acetate-EDTA buffer

BSPP: bis (p-sulfonatophenyl) phenylphosphine dihydrate dipotassium salt

TCEP: tris (2-carboxyethyl) phosphine hydrochloride

0.5×TBE: 89 mM tris, 89 mM boric acid, 2mM EDTA, pH=8.0

AAM: atomic force microscopy

NAS: nucleic acid stain

1.2 Chemicals

Single-stranded M13mp18 DNA was purchased from New England Biolabs (Catalog number: #N4040S). All staple strands and thoilated ssDNA were purchased from Shanghai Sangon Biotech Inc. (Shanghai, China). TAE was purchased from Beyotime Institute of Biotechnology (Shanghai, China). Magnesium acetate tetrahydrate (C₄H₆MgO₄•4H₂O), sodium citrate tribasic dehydrate (C₆H₅Na₃O₇·2H₂O), Tris (2-carboxyethyl) phosphine hydrochloride (TCEP), chloroauric acid (HAuCl₄), sodium chloride were bought from Aladdin (Shanghai, China). Bis (p-sulfonatophenyl) phenylphosphine dihydrate dipotassium salt (BSPP) was obtained from Sigma-Aldrich (USA).

EDTA, Tris, boric acid, CH₃OH, nucleic acid stain (NAS) are of analytical reagent grade. All solutions were prepared with deionized water ($\geq 18M\Omega$ cm) generated from a Millipore Q water purification system.

1.3	Seo	uence	of the	staple	ssDNA	and	thiolated	oligonu	cleotides
	~ • •		· · · · · ·		002111			o ngo no	

DNA	origami was	prepared acco	rding to Roth	emund's appro	bach with min	or modifications ^[1]
	0					

Staple name	(DNA sequences, from 5' to 3')
t11s18h,D1,	AATACTGCGGAATCGTAGGGGGGTAATAGTAAAATGTTTAGACT
t11s28h,E1,	TCTTTGATTAGTAATAGTCTGTCCATCACGCAAATTAACCGTT
t11s8h,A1,	CAGAAGGAAACCGAGGTTTTTAAGAAAAGTAAGCAGATAGCCG
t1s10g,B2,	GACGGGAGAATTAACTCGGAATAAGTTTATTTCCAGCGCC
t1s12i,C2,	TCATATGTGTAATCGTAAAACTAGTCATTTTC
t1s14i,D2,	GTGAGAAAATGTGTAGGTAAAGATACAACTTT
t1s16i,E2,	GGCATCAAATTTGGGGCGCGAGCTAGTTAAAG
t1s18i,A2,	TTCGAGCTAAGACTTCAAATATCGGGAACGAG
t1s20g,G2,	GAATACCACATTCAACTTAAGAGGAAGCCCGATCAAAGCG
t1s22i,H2,	TCGGGAGATATACAGTAACAGTACAAATAATT
t1s24i,A3,	CCTGATTAAAGGAGCGGAATTATCTCGGCCTC
t1s26i,B3,	GCAAATCACCTCAATCAATATCTGCAGGTCGA
t1s28i,C3,	CGACCAGTACATTGGCAGATTCACCTGATTGC
t1s2i,D3,	CGGGGTTTCCTCAAGAGAAGGATTTTGAATTA
t1s30g,E3,	TTGACGAGCACGTATACTGAAATGGATTATTTAATAAAAG
t1s4i,A3,	AGCGTCATGTCTCTGAATTTACCGACTACCTT
t1s6i,G3,	TTCATAATCCCCTTATTAGCGTTTTTCTTACC
t1s8i,H3,	ATGGTTTATGTCACAATCAATAGATATTAAAC
t2s11g,A4,	AGAAAAGCCCCAAAAAGAGTCTGGAGCAAACAATCACCAT
t2s13g,B4,	ACAGTCAAAGAGAATCGATGAACGACCCCGGTTGATAATC
t2s15f,C4,	ATAGTAGTATGCAATGCCTGAGTAGGCCGGAG
t2s17f,D4,	AACCAGACGTTTAGCTATATTTTCTTCTACTA

t2s1g,E4,	GATAAGTGCCGTCGAGCTGAAACATGAAAGTATACAGGAG
t2s21g,A4,	CCTGATTGCTTTGAATTGCGTAGATTTTCAGGCATCAATA
t2s23g,G4,	TGGCAATTTTTAACGTCAGATGAAAACAATAACGGATTCG
t2s25f,H4,	AAGGAATTACAAAGAAACCACCAGTCAGATGA
t2s27f,A5,	GGACATTCACCTCAAATATCAAACACAGTTGA
t2s3g,B5,	TTTGATGATTAAGAGGCTGAGACTTGCTCAGTACCAGGCG
t2s5f,C5,	CCGGAACCCAGAATGGAAAGCGCAACATGGCT
t2s7f,D5,	AAAGACAACATTTTCGGTCATAGCCAAAATCA
t3s10g,E5,	GTCAGAGGGTAATTGATGGCAACATATAAAAGCGATTGAG
t3s14e,A5,	CAATATGACCCTCATATATTTTAAAGCATTAA
t3s16e,G5,	CATCCAATAAATGGTCAATAACCTCGGAAGCA
t3s18g,H5,	AACTCCAAGATTGCATCAAAAAGATAATGCAGATACATAA
t3s20g,A6,	CGCCAAAAGGAATTACAGTCAGAAGCAAAGCGCAGGTCAG
t3s24e,B6,	TAATCCTGATTATCATTTTGCGGAGAGGAAGG
t3s26e,C6,	TTATCTAAAGCATCACCTTGCTGATGGCCAAC
t3s28g,D6,	AGAGATAGTTTGACGCTCAATCGTACGTGCTTTCCTCGTT
t3s30g,E6,	AGAATCAGAGCGGGAGATGGAAATACCTACATAACCCTTC
t3s4e,A6,	TGTACTGGAAATCCTCATTAAAGCAGAGCCAC
t3s6e,G6,	CACCGGAAAGCGCGTTTTCATCGGAAGGGCGA
t3s8g,H6,	CATTCAACAAACGCAAAGACACCAGAACACCCTGAACAAA
t4s11g,A7,	GCAAATATTTAAATTGAGATCTACAAAGGCTACTGATAAA
t4s13g,B7,	CGTTCTAGTCAGGTCATTGCCTGACAGGAAGATTGTATAA
t4s15f,C7,	CAGGCAAGATAAAAATTTTTAGAATATTCAAC
t4s17f,D7,	GATTAGAGATTAGATACATTTCGCAAATCATA
t4s1g,E7,	TAGCCCGGAATAGGTGAATGCCCCCTGCCTATGGTCAGTG
t4s21g,A7,	GCGCAGAGGCGAATTAATTATTTGCACGTAAATTCTGAAT
t4s23g,G7,	GATTATACACAGAAATAAAGAAATACCAAGTTACAAAATC
t4s25f,H7,	TAGGAGCATAAAAGTTTGAGTAACATTGTTTG
t4s27f,A8,	TGACCTGACAAATGAAAAATCTAAAATATCTT
t4s3g,B8,	TTTAACGGTTCGGAACCTATTATTAGGGTTGATATAAGTA

t4s5f,C8,	CTCAGAGCATATTCACAAACAAATTAATAAGT
t4s7f,D8,	GGAGGGAATTTAGCGTCAGACTGTCCGCCTCC
t5s10g,E8,	GATAACCCACAAGAATGTTAGCAAACGTAGAAAATTATTC
t5s14e,A8,	TTAATGCCTTATTTCAACGCAAGGGCAAAGAA
t5s16e,G8,	TTAGCAAATAGATTTAGTTTGACCAGTACCTT
t5s18g,H8,	TAATTGCTTTACCCTGACTATTATGAGGCATAGTAAGAGC
t5s20g,A9,	AACACTATCATAACCCATCAAAAATCAGGTCTCCTTTTGA
t5s24e,B9,	AATGGAAGCGAACGTTATTAATTTCTAACAAC
t5s26e,C9,	TAATAGATCGCTGAGAGCCAGCAGAAGCGTAA
t5s28g,D9,	GAATACGTAACAGGAAAAAACGCTCCTAAACAGGAGGCCGA
t5s30g,E9,	TTAAAGGGATTTTAGATACCGCCAGCCATTGCGGCACAGA
t5s4e,A9,	CCTTGAGTCAGACGATTGGCCTTGCGCCACCC
t5s6e,G9,	TCAGAACCCAGAATCAAGTTTGCCGGTAAATA
t5s8g,H9,	TTGACGGAAATACATACATAAAGGGCGCTAATATCAGAGA
t6s15g,B10,	ATAAAGCCTTTGCGGGAGAAGCCTGGAGAGGGTAG
t6s17f,C10,	TAAGAGGTCAATTCTGCGAACGAGATTAAGCA
t6s25g,E10,	TCAATAGATATTAAATCCTTTGCCGGTTAGAACCT
t6s27f,A10,	CAATATTTGCCTGCAACAGTGCCATAGAGCCG
t6s5g,H10,	CAGAGCCAGGAGGTTGAGGCAGGTAACAGTGCCCG
t6s7f,A11,	ATTAAAGGCCGTAATCAGTAGCGAGCCACCCT
t7s10g,B11,	ATAAGAGCAAGAAACATGGCATGATTAAGACTCCGACTTG
t7s14e,C11,	ATGACCCTGTAATACTTCAGAGCA
t7s16e,D11,	TAAAGCTATATAACAGTTGATTCCCATTTTTG
t7s18g,E11,	CGGATGGCACGAGAATGACCATAATCGTTTACCAGACGAC
t7s20g,A11,	GATAAAAACCAAAATATTAAACAGTTCAGAAATTAGAGCT
t7s24e,G11,	ACAATTCGACAACTCGTAATACAT
t7s26e,H11,	TTGAGGATGGTCAGTATTAACACCTTGAATGG
t7s28g,A12,	CTATTAGTATATCCAGAACAATATCAGGAACGGTACGCCA
t7s30g,B12,	GAATCCTGAGAAGTGTATCGGCCTTGCTGGTACTTTAATG
t7s4e,C12,	GCCGCCAGCATTGACACCACCCTC

t7s6e,D12,	AGAGCCGCACCATCGATAGCAGCATGAATTAT
t7s8g,E12,	CACCGTCACCTTATTACGCAGTATTGAGTTAAGCCCAATA
t8s17g,G12,	TAATTGCTTGGAAGTTTCATTCCAAATCGGTTGTA
t8s27g,A1,	CGCGAACTAAAACAGAGGTGAGGCTTAGAAGTATT
t8s7g,C1,	AGCCATTTAAACGTCACCAATGAACACCAGAACCA
t9s10h,D1,	TATCTTACCGAAGCCCAAACGCAATAATAACGAAAATCACCAG
t9s16e,E1,	ACTAAAGTACGGTGTCGAATATAA
t9s18g,A1,	TGCTGTAGATCCCCCTCAAATGCTGCGAGAGGCTTTTGCA
t9s20h,G1,	AAAGAAGTTTTGCCAGCATAAATATTCATTGACTCAACATGTT
t9s26e,H1,	ACCACCAGCAGAAGATGATAGCCC
t9s28g,A2,	TAAAACATTAGAAGAACTCAAACTTTTTATAATCAGTGAG
t9s30h,B2,	GCCACCGAGTAAAAGAACATCACTTGCCTGAGCGCCATTAAAA
t9s6e,C2,	CCATTAGCAAGGCCGGGGGGAATTA
t9s8g,D2,	GAGCCAGCGAATACCCAAAAGAACATGAAATAGCAATAGC
t-10s17h,E2,	ACCAACCTAAAAAATCAACGTAACAAATAAATTGGGCTTGAGA
t-10s27h,A2,	AACTCACATTATTGAGTGTTGTTCCAGAAACCGTCTATCAGGG
t-10s7h,G2,	ACGACAATAAATCCCGACTTGCGGGAGATCCTGAATCTTACCA t-
12s19h,C3,	CCTGACGAGAAACACCAGAACGAGTAGGCTGCTCATTCAGTGA t-
12s29h,D3,	ACGTGGACTCCAACGTCAAAGGGCGAATTTGGAACAAGAGTCC t-
12s9h,E3,	TGCTATTTTGCACCCAGCTACAATTTTGTTTTGAAGCCTTAAA
t-1s10e,A3,	AGAGAATAACATAAAAACAGGGAAGCGCATTA
t-1s12i,G3,	AGGGATAGCTCAGAGCCACCACCCATGTCAA
t-1s14e,H3,	ATTTTCTGTCAGCGGAGTGAGAATACCGATAT
t-1s14i,A4,	CAACAGTTTATGGGATTTTGCTAATCAAAAGG
t-1s16e,B4,	ATTCGGTCTGCGGGATCGTCACCCGAAATCCG
t-1s16i,C4,	GCCGCTTTGCTGAGGCTTGCAGGGGAAAAGGT
t-1s18g,D4,	CGACCTGCGGTCAATCATAAGGGAACGGAACAACATTATT
t-1s18i,E4,	GCGCAGACTCCATGTTACTTAGCCCGTTTTAA
t-1s20e,A4,	ACAGGTAGAAAGATTCATCAGTTGAGATTTAG
t-1s22i,G4,	CGCGTCTGATAGGAACGCCATCAACTTTTACA

t-1s24e,H4,	CAGTTTGACGCACTCCAGCCAGCTAAACGACG t-
1s24i,A5,	AGGAAGATGGGGACGACGACAGTAATCATATT t-
1s26e,B5,	GCCAGTGCGATCCCCGGGTACCGAGTTTTTCT
t-1s26i,C5,	CTCTAGAGCAAGCTTGCATGCCTGGTCAGTTG
t-1s28g,D5,	TTTCACCAGCCTGGCCCTGAGAGAAAGCCGGCGAACGTGG
t-1s28i,E5,	CCTTCACCGTGAGACGGGCAACAGCAGTCACA
t-1s2i,A5,	CCTTTTTTCATTTAACAATTTCATAGGATTAG
t-1s30e,G5,	CGAGAAAGGAAGGGAAGCGTACTATGGTTGCT
t-1s4e,H5,	TTATCAAACCGGCTTAGGTTGGGTAAGCCTGT
t-1s4i,A6,	TTTAACCTATCATAGGTCTGAGAGTTCCAGTA
t-1s6e,B6,	TTAGTATCGCCAACGCTCAACAGTCGGCTGTC
t-1s6i,C6,	AGTATAAAATATGCGTTATACAAAGCCATCTT
t-1s8g,D6,	TTTCCTTAGCACTCATCGAGAACAATAGCAGCCTTTACAG
t-1s8i,E6,	CAAGTACCTCATTCCAAGAACGGGAAATTCAT
t-2s11g,A6,	CCTCAGAACCGCCACCCAAGCCCAATAGGAACGTAAATGA
t-2s13g,G6,	AGACGTTACCATGTACCGTAACACCCCTCAGAACCGCCAC
t-2s15f,H6,	CACGCATAAGAAAGGAACAACTAAGTCTTTCC
t-2s17f,A7,	ATTGTGTCTCAGCAGCGAAAGACACCATCGCC
t-2s1g,B7,	AAAACAAAATTAATTAAATGGAAACAGTACATTAGTGAAT
t-2s21g,C7,	GCTCATTTTTTAACCAGCCTTCCTGTAGCCAGGCATCTGC
t-2s23g,D7,	GTAACCGTCTTTCATCAACATTAAAATTTTTGTTAAATCA
t-2s25f,E7,	ACGTTGTATTCCGGCACCGCTTCTGGCGCATC
t-2s27f,A7,	CCAGGGTGGCTCGAATTCGTAATCCAGTCACG
t-2s3g,G7,	AGAGTCAAAAATCAATATATGTGATGAAAACAAACATCAAG
t-2s5f,H7,	ACTAGAAATATATAACTATATGTACGCTGAGA
t-2s7f,A8,	TCAATAATAGGGCTTAATTGAGAATCATAATT
t-3s10g,B8,	AACGTCAAAAATGAAAAGCAAGCCGTTTTTATGAAACCAA
t-3s14e,C8,	GTTTTGTCAGGAATTGCGAATAATCCGACAAT
t-3s16e,D8,	GACAACAAGCATCGGAACGAGGGTGAGATTTG
t-3s18g,E8,	TATCATCGTTGAAAGAGGACAGATGGAAGAAAAATCTACG

t-3s20g,A8,	TTAATAAAACGAACTAACCGAACTGACCAACTCCTGATAA
t-3s24e,G8,	TGTAGATGGGTGCCGGAAACCAGGAACGCCAG
t-3s26e,H8,	GGTTTTCCATGGTCATAGCTGTTTGAGAGGCG
t-3s28g,A9,	GTTTGCGTCACGCTGGTTTGCCCCAAGGGAGCCCCCGATT
t-3s30g,B9,	TAGAGCTTGACGGGGAGTTGCAGCAAGCGGTCATTGGGCG
t-3s4e,C9,	GATTAAGAAATGCTGATGCAAATCAGAATAAA
t-3s6e,D9,	CACCGGAATCGCCATATTTAACAAAATTTACG
t-3s8g,E9,	AGCATGTATTTCATCGTAGGAATCAAACGATTTTTTGTTT
t-4s11g,A9,	AGGTTTAGTACCGCCATGAGTTTCGTCACCAGGATCTAAA
t-4s13g,G9,	AGCGTAACTACAAACTACAACGCCTATCACCGTACTCAGG
t-4s15f,H9,	TAGTTGCGAATTTTTTCACGTTGATCATAGTT
t-4s17f,A10,	GTACAACGAGCAACGGCTACAGAGGATACCGA
t-4s1g,B10,	GAGCAAAAGAAGATGAGTGAATAACCTTGCTTATAGCTTA t-
4s21g,C10,	GTTAAAATTCGCATTAATGTGAGCGAGTAACACACGTTGG t-
4s23g,D10,	GGATAGGTACCCGTCGGATTCTCCTAAACGTTAATATTTT
t-4s25f,E10,	AGTTGGGTCAAAGCGCCATTCGCCCCGTAATG
t-4s27f,A10,	CGCGCGGGCCTGTGTGAAATTGTTGGCGATTA
t-4s3g,G10,	ACATAGCGCTGTAAATCGTCGCTATTCATTTCAATTACCT
t-4s5f,H10,	GTTAAATACAATCGCAAGACAAAGCCTTGAAA
t-4s7f,A11,	CCCATCCTCGCCAACATGTAATTTAATAAGGC
t-5s10g,B11,	TCCCAATCCAAATAAGATTACCGCGCCCAATAAATAATAT
t-5s16e,D11,	AACAGCTTGCTTTGAGGACTAAAGCGATTATA
t-5s18g,E11,	CCAAGCGCAGGCGCATAGGCTGGCAGAACTGGCTCATTAT
t-5s20g,A11,	ACCAGTCAGGACGTTGGAACGGTGTACAGACCGAAACAAA
t-5s26e,H11,	TGCTGCAAATCCGCTCACAATTCCCAGCTGCA
t-5s28g,A12,	TTAATGAAGTTTGATGGTGGTTCCGAGGTGCCGTAAAGCA
t-5s30g,C12,	CTAAATCGGAACCCTAAGCAGGCGAAAATCCTTCGGCCAA
t-5s6e,D12,	GTGTGATAAGGCAGAGGCATTTTCAGTCCTGA
t-5s8g,E12,	ACAAGAAAGCAAGCAAATCAGATAACAGCCATATTATTTA
t-6s13f,A12,	ACAGACAGCCCAAATCTCCAAAAAAAAATTTCTTA

t-6s15c,G12,	CGAGGTGAGGCTCCAAAAGGAGCC	
t-6s17f,H12,	ACCCCCAGACTTTTTCATGAGGAACTTGCTTT	
t-6s23f,A1,	CGGCGGATTGAATTCAGGCTGCGCAACGGGGGGATG	
t-6s25c,B1,	TGGCGAAATGTTGGGAAGGGCGAT	
t-6s27f,C1,	TGTCGTGCACACAACATACGAGCCACGCCAGC	
t-6s3f,D1,	TCCCTTAGAATAACGCGAGAAAACTTTTACCGACC	
t-6s5c,E1,	GTTTGAAATTCAAATATATTTTAG	
t-6s7f,A1,	AATAGATAGAGCCAGTAATAAGAGATTTAATG	
t-7s10g,G1, G	CAGTTACAAAATAATAGAAGGCTTATCCGGTTATCAAC	t-
7s18g,A2, AA	AACACTTAATCTTGACAAGAACTTAATCATTGTGAATT	t-
7s20g,B2, A	CCTTATGCGATTTTATGACCTTCATCAAGAGCATCTTTG	
t-7s28g,D2,	TTCCAGTCCTTATAAATCAAAAGAGAACCATCACCCAAA	Г
t-7s30g,E2,	CAAGTTTTTTGGGGTCGAAATCGGCAAAATCCGGGAAAC	2
t-7s8g,G2,	GCGCCTGTTATTCTAAGAACGCGATTCCAGAGCCTAATTT	1
t-7s8g,G2,	GCGCCTGTTATTCTAAGAACGCGATTCCAGAGCCTAATTT	•
t-8s15f,H2,	CGGTTTATCAGGTTTCCATTAAACGGGAATACACT	
t-8s17c,A3,	GGCAAAAGTAAAATACGTAATGCC	
t-8s25f,B3,	TCTTCGCTATTGGAAGCATAAAGTGTATGCCCGCT	
t-8s27c,C3,	GCGCTCACAAGCCTGGGGTGCCTA	
t-8s5f,D3,	TTCTGACCTAAAATATAAAGTACCGACTGCAGAAC	
t-8s7c,E3,	TCAGCTAAAAAAGGTAAAGTAATT	
t-9s10g,A3,	ACGCTAACGAGCGTCTGGCGTTTTAGCGAACCCAACATG	Г
t-9s20g,H3,	TGGTTTAATTTCAACTCGGATATTCATTACCCACGAAAGA	L
t-9s30g,B4,	CGATGGCCCACTACGTATAGCCCGAGATAGGGATTGCGT	Г
ts-rem1, D4,	GCGCTTAATGCGCCGCTACAGGGC	
t-5s2e-t6s23c-37	,A6, TTAATTAATTTTTTACCATATCAAA	
t-7s4e-t8s25c-27	,B6, TTAATTTCATCTTAGACTTTACAA	
t-9s6e-t10s27c-1	T,C6, CTGTCCAGACGTATACCGAACGA	
t-11s8e-t12s29c	0T,D6, TCAAGATTAGTGTAGCAATACT	
t-5s12e-t6s3c-37	,E6, TGTAGCATTCCTTTTATAAACAGTT	

t-7s14e-t8s5c-2T,A6,	TTTAATTGTATTTCCACCAGAGCC
t-9s16e-t10s7c-1T,G6,	ACTACGAAGGCTTAGCACCATTA
t-11s18e-t12s9c-0T,H6,	ATAAGGCTTGCAACAAAGTTAC
t-5s22e-t6s13c-3T,A7,	GTGGGAACAAATTTCTATTTTGAG
t-7s24e-t8s15c-2T,B7,	CGGTGCGGGCCTTCCAAAAACATT
t-9s26e-t10s17c-1T,C7,	ATGAGTGAGCTTTTAAATATGCA
t-11s28e-t12s19c-0T,D7,	ACTATTAAAGAGGATAGCGTCC

Fig. S1 Locations of the three probes on the triangular origami DNA. The modified staple ssDNA molecules were red-colored in the image.

As to the DNA origami with probes, the blue colored strands were modified:

• In the first set of experiments:

A 60-mer joint strand was stretched out from the DNA origami substrate. In the experiments, the staple ssDNA t-1s10e,F3 was modified as below:

The red part with 60-mer length was added to the 3' end of the staple ssDNA.

AuNPs were immobilized with the following thiolated ssDNA, respectively. The red part was served as steric hindrance for combination of AuNPs on DNA origami.

20-mer thiolated-ssDNA (From 5' to 3'):

SH-TTTTTTCCAACCACCAACCAAACA

• In the second set of experiments:

A 20-mer joint strand was stretched out from the DNA origami substrate. In the experiments, the staple ssDNA t-1s10e,F3 was modified as below:

A 40-mer joint strand was stretched out from the DNA origami substrate. In the experiments, the staple ssDNA t-1s10e,F3 was modified as below:

A 60-mer joint strand was stretched out from the DNA origami substrate. In the experiments, the staple ssDNA t-1s10e,F3 was modified as below:

AuNPs were immobilized with the 20-mer ssDNA. The red part was served as steric hindrance for combination of AuNPs on DNA origami.

SH-TTTTTTCCAACCACACCAACCAACA (From 5' to 3')

• In the third set of experiments:

Three 20-mer joint strands were stretched out from the DNA origami substrate. In the experiments, the staple ssDNA t-1s10e,F3, t-1s8i, H3 and t-1s8i, E6 were modified, respectively, as below:

Probe # 1: (t-1s10e,F3)

Probe # 2: (t-1s8i, H3)

Probe # 3: (t-1s8i, E6)

AuNPs were modified with 20-mer thiolated oligonucleotides:

SH-TTTTTTCCAACCACACCAACCAACA (From 5' to 3')

2. Preparation of DNA origami

The single-strand M13mp18 virus DNA and the staple strands (including the modified ones) were mixed in a molar ratio of 1:10 in the $1 \times TAE \sim Mg^{2+}$ buffer (40 mM Tris, 20 mM acetic acid, 1 mM EDTA, 12.5 mM magnesium acetate). The mixture was annealed from 95°C to 20°C in a PCR instrument (1°C/100s). ^[1]The products were filtered with centrifugal filters using the washing buffer (1×TAE~Mg²⁺ buffer) for three times to remove excess staple strands.^[2]

3. Modification of AuNPs

AuNP-DNA conjugates were synthesized according to Ding's route. ^[3] Briefly, 15 mg BSPP was dissolved in a 50 mL AuNPs solution, followed by a stirring in dark at room temperature for 12 hours. Solid sodium chloride was added in slowly until the color of the solution changes from wine red to lilac. The products were collected by centrifugation at 10000 rpm for 15 min and resuspended in a mixture of BSPP and CH₃OH. After a second round of centrifugation, the AuNPs were suspended in 1mL BSPP (2.5mM). Thiolated oligonucleotides were activated with TCEP (10mM) for several hours and then incubated with the AuNPs at a molar ratio of 200:1 in a $0.5 \times$ TBE buffer containing 50 mM NaCl for 40 hours at room temperature. After washing with the buffer for three times, the oligonucleotides-conjugated AuNPs were harvested via centrifugation. The UV-vis spectra of the final products were measured to determine the concentration according to Wolfgang Haiss's method. ^[4]

4. Assembly of AuNPs with the modified DNA origami templates

The conjugated AuNPs were mixed with the modified DNA origami templates. The mixture was cooled from 43 to 20 °C to allow the hybridization of the complementary ssDNA for the assembly of AuNPs with the modified DNA origami templates.^[3]

5. AFM characterization

A freshly cleaved mica was pre-treated with a MgCl₂ solution. The adsorbed Mg²⁺ ions could facilitate the attachment of negatively charged DNA origami and AuNPs. Then, 10 μ L sample were dropped on the mica surface, drying in air for 6 hours.^[5] The AAM images were scanned with a Dimension Icon scanning probe microscope (Bruker, USA) at ambient conditions.

6. Gel electrophoresis

The resulting DNA origami-AuNPs were loaded on 1.0% agarose gels with (5 µL NAS) and run for three hours at 100V. ^{[6] [7]} The gel images were photographed using a digital camera system (Chemi XR5).

7. Data analysis

Data were collected from at least 4 runs of independent experiments. Differences between different groups were tested for significance using Student's t test (Origin 6.0).

Fig. S2 AAM images of (a) DNA origami triangles, (b) DNA origami triangles modified with a single strand DNA probe and (c) AuNP-attached DNA origami triangles. Height profiles of (d) a DNA origami triangle, (e) a DNA origami triangle modified with a single strand DNA probe and (f) a AuNP-attached DNA origami triangle.

Fig. S3 UV-vis spectra (a), hydrodynamic size (b) and zeta potential (c) of AuNPs before and after modification with BSPP and ssDNA. Data in (b) and (c) are presented as the average ± standard deviation from three independent measurements. The numbers 1, 2, 3, 4 and 5 correspond to AuNPs, BSPP-AuNPs, 20-mer DNA-BSPP-AuNPs, 40-mer DNA-BSPP-AuNPs and 60-mer DNA-BSPP-AuNPs, respectively.

Fig. S4 AAM image of the DNA origami attached 40-mer DNA-BSPP-AuNPs.

References

- [1] P. W. Rothemund, *Nature* **2006**, 440, 297.
- [2] Z. Zhao, Y. Liu, H. Yan, Nano letters. 2011, 11(7): 2997-3002.

- [3] B. Q. Ding, Z. T. Deng, H. Yan, S. Cabrini, R. N. Zuckermann, J. Bokor, J. AM. CHEM. SOC, 2010, 132, 3248.
- [4] Haiss W, Thanh N T K, Aveyard J, Aernig. D G. Analytical chemistry, 2007, 79(11): 4215-4221.
- [5] A. Keller, I. Bald, A. Rotaru, E. Cauët, K. V. Gothelf, A. Besenbacher, ACS nano, 2012, 6(5), 4392-4399.
- [6] S. Bidault, A. Polman, International Journal of Optics, 2012.
- [7] X. Shen, C. Song, J. Wang, D. Shi, Z. Wang, N. Liu, B. Ding, *Journal of the American Chemical Society*, 2011, 134(1), 146-149.