Supplementary Information

Ferrocene catalysed heteroarylation of BODIPy and reaction

mechanism studies by EPR and DFT methods

Swati Dixit,^a Mahendra Patil*^a and Neeraj Agarwal*^a

UM-DAE, Centre for Excellence in Basic Sciences, Health Center Building,

Kalina Campus, Santacruz (E), Mumbai, 400098, India

E-mail: mahendra.patil@cbs.ac.in and na@cbs.ac.in

Contents:

- Figure SI 1: ¹H NMR (above) and ¹³C NMR (below) spectra of 1 in CDCl₃
- Figure SI 2: ¹H NMR (above) and ¹³C NMR (below) spectra of 3 in CDCl₃

Figure SI 3: ¹H NMR (above) and ¹³C NMR (below) spectra of 4 in CDCl₃

Figure SI 4: ¹H NMR (above) and ¹³C NMR (below) spectra of 5 in CDCl₃

Figure SI 5: ¹H NMR (above) and ¹³C NMR (below) spectra of 6 in CDCl₃

Figure SI 6: ¹H NMR (above) and ¹³C NMR (below) spectra of 7 in CDCl₃

Figure SI 7: ¹H NMR (above) and ¹³C NMR (below) spectra of 8 in CDCl₃

Figure SI 8: COSY of compound 6 in CDCl₃

Figures SI 9-16: MALDI-TOF spectra of compounds 1-8

Figure SI 17: FT-IR spectrum of compound 3

Figure SI 18: FT-IR spectrum of compound 4

Figure SI 19: FT-IR spectrum of compound 5

Figure SI 20: FT-IR spectrum of compound 6

Density Functional Theory (DFT) calculations data

NMR spectra:

Figure SI 1: ¹H NMR (above) and ¹³C NMR (below) spectra of 1 in CDCl₃

Figure SI 2: ¹H NMR (above) and ¹³C NMR (below) spectra of 3 in CDCl₃

Figure SI 3: ¹H NMR (above) and ¹³C NMR (below) spectra of 4 in CDCl₃

Figure SI 4: ¹H NMR (above) and ¹³C NMR (below) spectra of 5 in CDCl₃

Figure SI 5: ¹H NMR (above) and ¹³C NMR (below) spectra of 6 in CDCl₃

Figure SI 6: ¹H NMR (above) and ¹³C NMR (below) spectra of 7 in CDCl₃

Figure SI 7: ¹H NMR (above) and ¹³C NMR (below) spectra of 8 in CDCl₃

Figure SI 8: COSY of compound 6 in CDCl₃

Mass spectra:

Figure SI 9: MALDI-TOF spectrum of compound 1

Figure SI 10: MALDI-TOF spectrum of compound 2

Figure SI 11: MALDI-TOF spectrum of compound 3

Figure SI 12: MALDI-TOF spectrum of compound 4

Figure SI 13: MALDI-TOF spectrum of compound 5

Figure SI 14: MALDI-TOF spectrum of compound 6

Figure SI 15: MALDI-TOF spectrum of compound 7

Figure SI 16: MALDI-TOF spectrum of compound 8

FT-IR Spectra of compound

Figure SI 17: FT-IR spectrum of compound 3

Figure SI 18: FT-IR spectrum of compound 4

Figure SI 19: FT-IR spectrum of compound 5

Figure SI 20: FT-IR spectrum of compound 6

Density Functional Theory (DFT) calculations data

Table S1. Optimized geometries (M06-2X, Cartesian coordinates in Å) and energies of reactants and intermediates (in a.u.). Notation: E = total electronic energy, Tc = thermal correction at 298K to obtain the Gibbs free energy, Nimag = number of imaginary frequencies $\langle S2 \rangle$ = expectation value.

ArN ₂ ⁺	Ferrocene (FeCp ₂)
E = -677.649637	E = -1650.6172541
Nimag = 0	Nimag = 0
Tc = 0.024781	Tc = 0.135911
6 -0.426157 0.188148 -0.000127	6 -1.743603 0.062580 1.205755
7 0.139287 1.361369 -0.000439	6 -1.744254 1.166041 0.312652
16 0.579080 -1.204018 -0.000109	6 -1.743511 0.657498 -1.012675
6 1.475265 1.183546 0.000201	6 -1.742322 -0.760220 -0.938612
6 1.891188 -0.132633 0.000183	6 -1.742432 -1.127882 0.432421
1 2.133358 2.039179 0.000626	1 -1.708354 0.119162 2.283007
1 2.900715 -0.516001 0.000665	1 -1.709191 2.208018 0.591864
7 -1.804959 0.096277 -0.000035	1 -1.708114 1.245469 -1.917133
7 -2.897347 0.014746 0.000318	1 -1.705255 -1.438634 -1.777249
	1 -1.705440 -2.134962 0.818830
	26 -0.000019 0.000598 0.000293
	6 1.742754 -1.166169 -0.314192
	6 1.742797 -0.061674 -1.206053
	6 1.743329 -0.659086 1.011766
	1 1.706045 -2.207717 -0.594723
	6 1.743568 1.127867 -0.431363
	1 1.706475 -0.116768 -2.283363
	6 1.743800 0.758736 0.939224
	1 1.707699 -1.248076 1.915544
	1 1.707795 2.135496 -0.816532

	1 1.708067 1.436307 1.778614
Ar radical	$FeCp_2^+\bullet$
E = -568.3295967	E = -1650.4111418
Nimag = 0	Nimag = 0
Tc = 0.015199	Tc = 0.135243
$\langle S2 \rangle = 0.759031$	⟨S2⟩ = 0.867605
6 -0.051901 -1.229014 -0.000058	6 1.718464 -1.062107 0.577868
7 -1.241357 -0.822950 0.000054	6 1.718360 -0.878207 -0.831378
16 1.193948 -0.036772 0.000015	6 1.719161 0.519201 -1.091572
6 -1.278854 0.570351 -0.000045	6 1.719840 1.198268 0.156655
6 -0.061965 1.167067 -0.000025	6 1.719400 0.221057 1.187944
1 -2.231438 1.078887 0.000093	1 1.660161 -2.008698 1.093186
1 0.174098 2.219690 0.000053	1 1.660112 -1.660527 -1.572606
	1 1.662482 0.982447 -2.064766
	1 1.662671 2.266948 0.296559
	1 1.662450 0.418741 2.247587
	26 0.000000 0.000275 -0.000008
	6 -1.718782 0.877216 0.832218
	6 -1.718983 1.062449 -0.576865
	6 -1.718899 -0.520444 1.091086
	1 -1.660967 1.658862 1.574184
	6 -1.719308 -0.220148 -1.188147
	1 -1.661198 2.009558 -1.091285
	6 -1.719241 -1.198328 -0.157777
	1 -1.661986 -0.984571 2.063849
	1 -1.662285 -0.416791 -2.247980
	1 -1.661513 -2.266849 -0.298697
BODPy	Ar•-BODPy
E = -912.329743	E = -1480.7403376
Nimag = 0	Nimag = 0

Tc = 0.190406	Tc = 0.230487
	⟨S2⟩ = 0.765938
6 -2.053872 -2.509280 -0.175499	6 1.737544 -1.032752 -1.007564
6 -0.934851 -3.354289 -0.271214	6 0.949903 -2.310697 -1.031719
6 -0.274473 -1.210292 -0.061136	6 -0.455106 -0.619637 -0.481054
6 0.184623 -2.540299 -0.207764	6 -0.324087 -2.060334 -0.717549
7 -1.662421 -1.238593 -0.051100	7 0.734151 -0.039106 -0.629394
5 -2.600920 -0.003570 0.020464	5 1.071679 1.447661 -0.379376
9 -3.439501 0.025902 -1.088110	9 1.902997 1.586815 0.734323
6 -0.945035 3.358320 0.210120	6 -1.839333 3.717581 0.263611
6 -2.061185 2.508548 0.123993	6 -0.480568 3.461627 0.025103
6 0.176921 2.546000 0.173516	6 -2.488643 2.492837 0.252437
6 -0.277726 1.211993 0.051049	6 -1.502656 1.497472 0.010262
7 -1.665754 1.236440 0.029754	7 -0.283709 2.138579 -0.128544
6 0.425556 0.001584 -0.000612	6 -1.619978 0.108483 -0.144859
6 1.902666 0.002001 0.003435	6 -2.921150 -0.567582 0.043313
6 2.604383 -0.781940 0.925497	6 -3.450904 -1.405366 -0.944484
6 2.610304 0.784628 -0.915217	6 -3.650109 -0.363210 1.220155
6 3.993339 -0.774721 0.931716	6 -4.679129 -2.028220 -0.755159
1 2.057662 -1.372513 1.651033	1 -2.908866 -1.550312 -1.872543
6 3.999247 0.776146 -0.913539	6 -4.878391 -0.986015 1.406261
1 2.068504 1.374446 -1.644987	1 -3.238913 0.273820 1.994899
6 4.692287 0.000539 0.011164	6 -5.395411 -1.820517 0.419862
1 4.529692 -1.372591 1.658197	1 -5.080374 -2.669705 -1.530411
1 4.540253 1.373022 -1.637388	1 -5.427997 -0.823564 2.325545
1 5.775445 0.000024 0.014181	1 -6.352875 -2.306028 0.565514
9 -3.360177 -0.036679 1.185884	9 1.715208 1.981627 -1.497472
1 -3.111964 2.760234 0.135191	1 0.345207 4.153909 -0.046090
1 -0.975800 4.432229 0.296919	1 -2.278347 4.690947 0.413783
1 1.209569 2.851209 0.238556	1 -3.542841 2.303911 0.380733

1 1.218605 -2.840752 -0.274112	1 -1.133277 -2.768868 -0.635063
1 -0.962251 -4.425871 -0.383911	1 1.399792 -3.265635 -1.260673
1 -3.103889 -2.763141 -0.199578	1 2.124457 -0.787424 -2.004256
	6 2.878983 -1.069472 -0.018948
	7 2.752075 -1.505341 1.195050
	16 4.447580 -0.462993 -0.416992
	6 3.930182 -1.365327 1.883601
	6 4.961330 -0.822749 1.181098
	1 3.987330 -1.686399 2.914085
	1 5.970684 -0.626688 1.505585
Ar-BODPy	BF ₄ -
E = -1480.1656083	E = -424.6105985
Nimag = 0	Nimag = 0
Tc = 0.220929	Tc = -0.010895
6 1.632786 -1.153675 0.100456	5 0.000000 0.000000 0.000000
6 0.962474 -2.393105 0.198979	9 0.810622 0.810622 0.810622
6 -0.533130 -0.724249 0.028172	9 -0.810622 -0.810622 0.810622
6 -0.388196 -2.125320 0.154920	9 -0.810622 0.810622 -0.810622
7 0.734845 -0.153781 0.005234	9 0.810622 -0.810622 -0.810622
5 1.002093 1.383059 0.002185	
9 1.764948 1.741005 1.106512	
6 -1.961564 3.670324 -0.029609	
6 -0.584881 3.395247 0.030215	
6 -2.612361 2.447185 -0.048222	
6 -1.615422 1.445658 0.015352	
7 -0.381317 2.074752 0.057591	
6 -1.701479 0.050162 0.008162	
6 -3.021612 -0.612137 -0.018271	
6 -3.301598 -1.573862 -0.995256	

6	-4.000840 -0.280679	0.923679
6	-4.546471 -2.188320	-1.031803
1	-2.550040 -1.815729	-1.737586
6	-5.238937 -0.909941	0.890936
1	-3.778822 0.448738	1.693755
6	-5.514878 -1.860353	-0.087884
1	-4.759483 -2.921888	-1.799630
1	-5.987674 -0.659668	1.632452
1	-6.483326 -2.344951	-0.114785
9	1.654472 1.752307	-1.173312
1	0.248666 4.082316	0.043941
1	-2.405973 4.651619	-0.063402
1	-3.674362 2.268961	-0.111077
1	-1.199658 -2.832893	0.220086
1	1.454974 -3.346802	0.290088
6	3.088466 -1.036410	0.118857
7	3.809278 -2.034880	0.562430
16	4.024305 0.292641	-0.496396
6	5.141060 -1.772967	0.446460
6	5.452452 -0.565204	-0.103889
1	5.860965 -2.504358	0.785561
1	6.425746 -0.139478	-0.291092
HB	F ₄	
E =	-425.0057614	
Nin	nag = 0	
Tc =	= -0.006141	
5	-0.492523 0.037064	-0.001775
9	-0.387715 1.348214	-0.108970
9	-0.643946 -0.510183	1.186631
9	-0.652205 -0.695258	-1.084795

9 1.712167 -0.225072 0.008165	
1 2.207905 0.555366 -0.000395	
CuCl	CuCl radical cation
E = -2100.6105986	E = -2100.3677422
Nimag = 0	Nimag = 0
Tc = -0.022834	Tc = -0.023128
29 0.000000 0.000000 0.812516	29 0.000000 0.000000 0.785272
17 0.000000 0.000000 -1.386057	17 0.000000 0.000000 -1.339581
L-Ascorbic acid	L-Ascorbic acid radical cation
E = -684.7212139	E = -684.4779961
Nimag = 0	Nimag = 0
Tc = 0.114898	Tc = 0.115528
	$\langle S2 \rangle = 0.756504$
6 -0.172174 -0.292196 0.685854	6 -0.187929 -0.237880 0.676466
6 0.662469 0.915294 0.356777	6 0.647392 0.962103 0.334720
6 1.841711 0.519496 -0.125855	6 1.886359 0.509230 -0.143784
6 1.884609 -0.949073 -0.082905	6 1.881729 -0.986153 -0.060267
8 0.707148 -1.393747 0.431129	8 0.690581 -1.350001 0.447659
1 -0.456933 -0.325792 1.742388	1 -0.462089 -0.230436 1.735911
8 2.770408 -1.688446 -0.402107	8 2.758071 -1.723963 -0.363231
8 2.908978 1.211100 -0.566759	8 2.908016 1.157222 -0.562389
8 0.263489 2.197133 0.476584	8 0.381127 2.212169 0.444193
1 2.728547 2.154403 -0.474968	1 2.786051 2.124878 -0.550318
1 -0.360619 2.298623 1.204980	1 -0.474766 2.425394 0.855381
6 -1.419262 -0.469288 -0.171655	6 -1.440663 -0.428582 -0.185873
1 -1.096055 -0.605801 -1.213057	1 -1.128552 -0.504743 -1.235797
6 -2.369040 0.718470 -0.100012	6 -2.446128 0.707555 -0.041900
1 -1.925752 1.598569 -0.573511	1 -2.058055 1.635999 -0.477757
1 -2.598465 0.939430 0.950038	1 -2.683197 0.857858 1.017582
8 -3.535492 0.296901 -0.789972	8 -3.579526 0.261247 -0.758552

1 -4.253537 0.901433 -0.587050	1 -4.346210 0.774357 -0.489235
8 -2.070187 -1.625896 0.306137	8 -2.005378 -1.630442 0.263227
1 -2.961824 -1.593450 -0.062136	1 -2.900864 -1.650795 -0.099198