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Plane Wave Expansion Methodology 

To determine the phonon band structure using the plane wave expansion method, we begin with the 
3-dimensional elastic wave equation in terms of Lamé coefficients for a locally isotropic medium:1-3 
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where t is time, i and l are indices (1, 2, or 3), and 𝑢!   , 𝑢!, 𝑥!   and 𝑥!   are the Cartesian components of the 
displacement vector, 𝒖(𝒓), and position vector,  𝒓, respectively. The spatially varying density, first Lamé 
coefficient, and second Lamé coefficient are represented by  𝜌(𝒓), 𝜆 𝒓 , and 𝜇 𝒓 , respectively. Since a 
phononic crystal is periodic, any given local material property, f(r), is also periodic with respect to all 
lattice vectors, R.  

 𝑓 𝒓 + 𝑹 = 𝑓 𝒓  (2a) 

 𝑹 = 𝑛!𝒂𝟏 + 𝑛!𝒂𝟐 + 𝑛!𝒂𝟑 (2b) 

where f(r) is representative of 𝜌(𝒓), 𝜆 𝒓 , or 𝜇 𝒓  and ni is an integer. Since this paper focuses on face-
centered cubic systems, we use the following lattice vectors:  

 𝒂𝟏 =
!
!
(𝑥 + 𝑧) (3a) 

 𝒂𝟐 =
!
!
(𝑥 + 𝑦) (3b) 

 𝒂𝟑 =
!
!
(𝑦 + 𝑧) (3c) 

where a represents the lattice constant of the conventional face-centered cubic lattice. We construct a 
triclinic primitive unit cell with 8 spheres at the corners using these three vectors (Figure S1b). Since 
𝑓 𝒓  is a periodic function in space, it can be expanded in a 3-D Fourier series exploiting unit cell vectors 
and reciprocal lattice vectors (RLVs): 

 𝑓 𝒓 = 𝑓!𝑒!".𝒓!  (4) 

where 

 𝑮 = 𝑚!𝒃𝟏 +𝑚!𝒃𝟐 +𝑚!𝒃𝟑 (5) 

 𝒃𝟏 = 2𝜋 𝒂𝟐×𝒂𝟑
𝒂𝟏.(𝒂𝟐×𝒂𝟑)

     , 𝒃𝟏 =
!!
!
(𝑘! − 𝑘! + 𝑘!) (6a) 

 𝒃𝟐 = 2𝜋 𝒂𝟑×𝒂𝟏
𝒂𝟐.(𝒂𝟑×𝒂𝟏)

   , 𝒃𝟐 =
!!
!
(𝑘! + 𝑘! − 𝑘!) (6b) 
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 𝒃𝟑 = 2𝜋 𝒂𝟏×𝒂𝟐
𝒂𝟑.(𝒂𝟏×𝒂𝟐)

   , 𝒃𝟑 =
!!
!
(𝑘! − 𝑘! + 𝑘!) (6c) 

where G is a reciprocal lattice vector, mi is an integer, and bi are reciprocal lattice unit vectors. Since the 
local material properties are periodic functions of the position vector, the Floquet-Bloch theorem4 tells us 
that the eigensolutions of the wave equation are modulated sinusoids of the form: 

 𝑢 𝑟 = 𝑢𝒌 𝑟 𝑒!(𝒌∙𝒓) (7) 

where 

 𝑢𝒌 𝒓 = 𝑢𝒌 𝒓 + 𝑛!𝒂𝒊!!!,!,!  (8) 

The displacements, 𝑢𝒌, are also periodic and can be expanded in a 3-D Fourier series:    

 𝑢 𝑟 = 𝑢𝒌!𝑮𝑮 𝑒!𝒌∙𝒓 = 𝑢𝒌!𝑮𝑮 𝑒!(𝒌!𝑮)∙𝒓 (9) 

We consider plane wave solutions of the form shown in Equation 10, where j is the imaginary unit and ω 
is angular frequency:  

 𝑢 = 𝑒!(𝒌∙𝒓!!") (10) 

By substituting Equations 4, 9, and 10 into Equation 1, we can arrive at the following equation: 
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(11) 

where ko is a wave vector, 𝑮,𝑮! and 𝑮!! are reciprocal lattice vectors, and i, l, and n are indices that vary 
between 1, 2, and 3. Equation 11 can be rewritten in an eigenvector-eigenvalue matrix form, 𝐴𝑈 = 𝑈Λ, 
where U is the eigenvector matrix, 𝛬 is eigenvalue matrix, and A is a matrix of coefficients.  

 

𝐴!!,!!! = 𝜌𝑮𝒊!𝑮!!
!!

𝜆𝑮!!!𝑮𝒏!
(𝒌𝟎 + 𝑮!!)!(𝒌𝟎 + 𝑮𝒍!)! (𝒌𝟎 + 𝑮!!)!(𝒌𝟎 + 𝑮𝒍!)! (𝒌𝟎 + 𝑮!!)!(𝒌𝟎 + 𝑮𝒍!)!
(𝒌𝟎 + 𝑮!!)!(𝒌𝟎 + 𝑮𝒍!)! (𝒌𝟎 + 𝑮!!)!(𝒌𝟎 + 𝑮𝒍!)! (𝒌𝟎 + 𝑮!!)!(𝒌𝟎 + 𝑮𝒍!)!
(𝒌𝟎 + 𝑮!!)!(𝒌𝟎 + 𝑮𝒍!)! (𝒌𝟎 + 𝑮!!)!(𝒌𝟎 + 𝑮𝒍!)! (𝒌𝟎 + 𝑮!!)!(𝒌𝟎 + 𝑮𝒍!)!

+𝜇𝑮!!!𝑮𝒏!
(𝒌𝟎 + 𝑮𝒍!)!(𝒌𝟎 + 𝑮!!)! (𝒌𝟎 + 𝑮𝒍!)!(𝒌𝟎 + 𝑮!!)! (𝒌𝟎 + 𝑮𝒍!)!(𝒌𝟎 + 𝑮!!)!
(𝒌𝟎 + 𝑮𝒍!)!(𝒌𝟎 + 𝑮!!)! (𝒌𝟎 + 𝑮𝒍!)!(𝒌𝟎 + 𝑮!!)! (𝒌𝟎 + 𝑮𝒍!)!(𝒌𝟎 + 𝑮!!)!
(𝒌𝟎 + 𝑮𝒍!)!(𝒌𝟎 + 𝑮!!)! (𝒌𝟎 + 𝑮𝒍!)!(𝒌𝟎 + 𝑮!!)! (𝒌𝟎 + 𝑮𝒍!)!(𝒌𝟎 + 𝑮!!)!

+𝜇𝑮!!!𝑮𝒍! (𝒌𝟎 + 𝑮𝒍!)!(𝒌𝟎 + 𝑮!!)!! 𝐼!

!!!  (12a) 

  

 𝐴 = 𝐴𝑮!,𝑮!! !,!∈!…!
 (12b) 

  



 𝑈 =

𝑢𝒌𝟎!𝑮𝟏
!,!

𝑢𝒌𝟎!𝑮𝟏
!,!

𝑢𝒌𝟎!𝑮𝟏
!,!

…

𝑢𝒌𝟎!𝑮𝟏
!!,!

𝑢𝒌𝟎!𝑮𝟏
!!,!

𝑢𝒌𝟎!𝑮𝟏
!!,!

.

.

.
…

.

.

.
𝑢𝒌𝟎!𝐆𝑴
!,!

𝑢𝒌𝟎!𝐆𝑴
!,!

𝑢𝒌𝟎!𝐆𝑴
!,!

…

𝑢𝒌𝟎!𝐆𝑴
!!,!

𝑢𝒌𝟎!𝐆𝑴
!!,!

𝑢𝒌𝟎!𝐆𝑴
!!,!

 (12c) 

 

 Λ =

𝜔!! 0 0

0
. 0 0
0 . 0
0 0 .

0

0 0 𝜔!!!

 (12d) 

where (𝒌𝟎 + 𝑮)! refers to the component of (𝒌𝟎 + 𝑮) in direction i and M represents the total number of 
Fourier coefficients utilized in each of the three dimensions. Solving the above matrix equation yields the 
eigenvalues, ω, of the eigenvector, ko. Varying ko throughout the Brillouin zone then allows the phonon 
band diagram to be mapped out. 

In practice, a finite number of RLVs must be chosen when doing the Fourier expansion shown in 
Equation 4. To do this we use a centered numerical Fourier transform with 301 terms (i.e., -150,… , 0, …. 
150) for each of the three dimensions. For our numerical Fourier transform we utilized the FFTW 
package.5 However, using all 301 term in Equation 12 would yield intractably large matrices. For 
computational purposes, we utilize a centered 2m + 1 subset of these terms (i.e. -m, -(m-1), …, 0, …, m-1, 
m). The total number of Fourier coefficients utilized in each dimension is then M = 2m + 1. For the 
calculations in our paper, we use m = 8 (i.e. M = 17) in each of the three dimensions, which leads to a 
total number of 729 RLVs for our phononic band diagram calculations. We conducted a numerical 
convergence test by systematically increasing the value of m in a model phononic crystal system. We 
found that increasing m beyond 8 led to very small ~1% changes in the frequencies of the phonon bands 
(Figure S2). We also confirmed the numerical accuracy of our code by benchmarking it against PWE 
results in the literature (Figure S2).1 

For the purposes of mapping out the phonon band diagram, we choose k0 values along the edges of 
the irreducible first Brillouin zone (Figure S1C). Table 1 shows the Cartesian coordinates of the 
symmetry points of the Brillouin zone. We moved k0 along the path of X-L-U-Γ-X-W-K and chose 20 
points along each segment. We utilized the parallel computing library, Message Passing Interface (MPI),6 
to expedite computational time. We also structured our code to separate our chosen k0 points among 
multiple cores. This allows the eigenfrequencies of multiple k0 points to be computed in parallel, and 
leads to a decrease in computational time by a factor of 1/n, where n is the number of cores. 

 

 

Phononic Band Gap Characteristics as a Function of Nanocrystal Core Volume Fraction 

The main text of this paper presents the phononic band gap characteristics as a function of nanocrystal 
core diameter, d, and interparticle distance, L. Since the interparticle distance is determined by the organic 
ligand length, varying d and L is equivalent to varying the nanocrystal core volume fraction. The 



relationship between nanocrystal core volume fraction is given by the equation below and is also 
illustrated in Figure S3.  
 

 𝑁𝑎𝑛𝑜𝑐𝑟𝑦𝑠𝑡𝑎𝑙  𝐶𝑜𝑟𝑒  𝑉𝑜𝑙𝑢𝑚𝑒  𝐹𝑟𝑎𝑐𝑡𝑖𝑜𝑛 = !
! !

!
!!!

!
 (13) 

 
In some instances, it may be more convenient to see the phononic band gap characteristics as a function 
of nanocrystal core volume fraction instead of nanocrystal diameter. This data is shown in Figures S4 and 
S5 below (which are equivalent to Figures 4 and 5 in the main text). 
 
 
 
The Effect of Poisson’s Ratio on the Phononic Band Gap 

We calculated the impact of the nanocrystal core Poisson’s ratio, νNC Core, and the ligand matrix Poisson’s 
ratio, νligand, on the phononic band gap center frequency and width. We found that varying Poisson’s ratio 
from 0.1 – 0.4 has only a minor effect on the band gap characteristics (Figure S6). 

  



 

Figure S1. (a) Schematic of the conventional unit cell for a face-centered cubic lattice with relevant 
geometrical parameters labeled: interparticle distance, L, lattice constant, a, and nanocrystal core 
diameter, d. (b) Schematic of a primitive unit cell (black lines) for a face-centered cubic lattice and 
corresponding primitive cell lattice vectors, a1, a2, and a3. (c) Schematic of the first Brillouin zone (black 
lines) and the irreducible region of the first Brillouin zone (red lines). 
 

Point Cartesian Coordinates, 𝑘! , 𝑘! , 𝑘!  

Γ [0,0,0] 

X [0,
2𝜋
𝑎
, 0] 

L [
𝜋
𝑎
,
𝜋
𝑎
,
𝜋
𝑎
] 

W [
𝜋
𝑎
,
2𝜋
𝑎
, 0] 

U [
𝜋
2𝑎

,
2𝜋
𝑎
,
𝜋
2𝑎
] 

K [
3𝜋
2𝑎

,
3𝜋
2𝑎

, 0] 

Table 1. The Cartesian coordinates of the key symmetry points in the Brillouin zone of a face-centered 
cubic lattice. 



 

 

 
 
Figure S2. (a) The phonon band diagram of Au spheres in a Si matrix for a face-centered cubic lattice. 
Note that we have used normalized frequency ω*a/c (c is the transverse speed of sound in the matrix 
material) in this band diagram. This band diagram agrees with the PWE results in Reference 1 and 
confirms the numerical accuracy of our code. (b) The normalized frequency of the 3rd band at symmetry 
point L as a function of the parameter, m. Increasing m beyond the value used in this paper (m = 8) leads 
to negligible changes in phonon frequency. For clarity we have used a blue circle in part (a) to mark the 
frequency location of the 3rd band at symmetry point L.   
 
 
 
 
  

 
Figure S3. The nanocrystal core volume fraction in a nanocrystal superlattice as a function of nanocrystal 
core diameter, d, and interparticle distance, L. 
            
 



 
 
Figure S4. The effect of nanocrystal core volume fraction on the center frequency of the phononic band 
gap for: (a) varying interparticle distance, L; (b) varying elastic modulus of the ligand matrix, Eligand; and 
(c) varying elastic modulus of the nanocrystal core, ENC Core. Unless otherwise specified, L, Eligand, and ENC 

Core are fixed at 1.5 nm, 2.6 GPa, and 54 GPa, respectively. 



 
Figure S5. The effect of nanocrystal core volume fraction on the phononic band gap width for: (a) 
varying interparticle distance, L; (b) varying elastic modulus of the ligand matrix, Eligand; and (c) varying 
elastic modulus of the nanocrystal core, ENC Core. Unless otherwise specified, L, Eligand, and ENC Core are 
fixed at 1.5 nm, 2.6 GPa, and 54 GPa, respectively. 
 

 
 



 

 
Figure S6. The effect of ligand Poisson ratio, νligand, on the (a) phononic band gap center frequency and 
(b) phononic band gap width; and the effect of nanocrystal core Poisson ratio, νNC Core, on the (a) phononic 
band gap center frequency and (b) phononic band gap width. In parts (a – d), the following parameters are 
used: L = 1.5 nm, Eligand = 2.6 GPa, and ENC Core = 54 GPa. 
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