Composition controlled nickel cobalt sulfides core-shell structure as high capacity and good rate-capability electrodes for hybrid supercapacitors

Lei Zhang,⁺ Haitao Zhang,⁺,* Long Jin, Binbin Zhang, Fangyan Liu, Hai Su, Fengjun Chun, Qinghan Li, Jinfang Peng, Weiqing Yang *

Key Laboratory of Advanced Technologies of Materials (Ministry of Education), School

of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031,

China.

*To whom correspondence should be addressed. E-mail: wqyang@swjtu.edu.cn,

haitaozhang@swjtu.edu.cn.

[+] These authors contributed equally to this work.

Figure S1. The morphology of the precursors NiCo-glycerate spheres corresponding to the $NiCo_2S_4$ sample. (a, b) FESEM image. (c) TEM image.

Figure S2. SEM image and EDS-elemental mapping images of NiCo-glycerate spheres corresponding to the $NiCo_2S_4$ sample.

Figure S3. The SAED patterns of the Ni–Co sulfides: (a) $NiCo_2S_4$, (b) $Ni_{1.5}Co_{1.5}S_4$, and (c) Ni_2CoS_4 , respectively.

Figure S4. SEM-EDS elemental mapping images and its corresponding EDS spectra: (a) $NiCo_2S_4$, (b) $Ni_{1.5}Co_{1.5}S_4$, and (c) Ni_2CoS_4 .

Element	Ni At (%)	<i>Co At</i> (%)	R _{Ni/Co}
NiCo ₂ S ₄	35.1	64.9	1/1.9
Ni _{1.5} Co _{1.5} S ₄	47.2	52.8	1/1.1
Ni ₂ CoS ₄	65.4	34.6	1.9/1

Table S1. The ratio of nickel and cobalt according to their XPS data.

gure S5. XRD patterns of the NiCo-glycerate precursor of NiCo₂S₄, Ni_{1.5}Co_{1.5}S₄, and Ni₂CoS₄.

Fi

Figure S6. The cyclic voltammetry curves with the scan rate ranging from 2 to 100 mV s⁻¹ of (a) NiCo₂S₄, (b) Ni_{1.5}Co_{1.5}S₄, and (c) Ni₂CoS₄.

Figure S7. The first three CV curves at 0.5 mV s⁻¹of (a) $NiCo_2S_4$, (b) $Ni_{1.5}Co_{1.5}S_4$ and (c) Ni_2CoS_4 . Both of the samples are full immerged into 6M KOH solution overnight and tested with a fresh electrode.

Figure S8. The galvanostatic charging/discharging voltage profiles with the current density ranging from 1 to 20 A g^{-1} of (a) NiCo₂S₄, (b) Ni_{1.5}Co_{1.5}S₄, and (c) Ni₂CoS₄.

Reference	Micro/nano structure	Capacity	Specific capacity	Capacity retention
This work	Core-shell sphere (Ni _{1.5} Co _{1.5} S ₄)	122 mAh g ⁻¹ (1 A g ⁻¹)	98 mAh g ⁻¹ (20 Ag ⁻¹)	80 % from 1 to 20 A g ⁻¹
1	Mesoporous nanosheet	124 mAh g ⁻¹ (1 A g ⁻¹)	103 mAh g ⁻¹ (20 Ag ⁻¹)	83.3 % from 1 to 20 A g ⁻¹
2	Nanosheet	173 mAh g ⁻¹ (1 A g ⁻¹)	705 mAh g ⁻¹ (20 Ag ⁻¹)	68% from 1 to 20 A g ⁻¹
3	Hollow tubular syructure	159 mAh g ⁻¹ (2 A g ⁻¹)	108 mAh g ⁻¹ (20 Ag ⁻¹)	68 % from 2 to 20 A g ⁻¹
4	Hollow nanoneedle arrays on carbon fiber paper	208 mAh g ⁻¹ (1 A g ⁻¹)	129 mAh g ⁻¹ (20 A g ⁻¹)	62 % from 1 to 20 A g ⁻¹
5	Hollow nanoprism	136 mAh g ⁻¹ (1 A g ⁻¹)	89 mAh g ⁻¹ (20 Ag ⁻¹)	65% from 1 to 20 A g^{-1}
6	NiCo ₂ S ₄ /Ni(OH) ₂ core- shell heterostructured nanotube arrays on carbon-fabric	450 mAh g ⁻¹ (1 mA cm ⁻²)	266 mAh g ⁻¹ (20 mA cm ⁻ ²)	59% from 1 to 20 mA cm ⁻²
7	Nanotube array	302 mAh g ⁻¹ (3 A g ⁻¹)	158 mAh g ⁻¹ (20 Ag ⁻¹)	52% from 3 to 20 A g^{-1}
8	Hollow hexagonal	48 mAh g ⁻¹ (1 A g ⁻¹)	25 mAh g ⁻¹ (20 Ag ⁻¹)	53% from 1 to 20 A g ⁻¹
9	Nanosheet on graphene	129 mAh g ⁻¹ (1 A g ⁻¹)	76 mAh g ⁻¹ (20 Ag ⁻¹)	50% from 1 to 20 A g ⁻¹

Table S2. Rate capacity of Ni–Co sulfide with different micro/nano structure from recent reports in three electrode configuration.

Figure S9. The electrochemical impedance spectra of (a) $NiCo_2S_4$, (b) $Ni_{1.5}Co_{1.5}S_4$, and (c) Ni_2CoS_4 .

Figure S10. The 1st, 500th, 1000th, 1500th, 2000th charge and discharge cycles of (a) $NiCo_2S_4$, (b) $Ni_{1.5}Co_{1.5}S_4$, and (c) Ni_2CoS_4 during 2000 cycles long-term cycling test.

Figure S11. XRD pattern of the nickel cobalt sulfides samples with nickel foam were characterized after 2000 cycles test ranging from (a) 10° - 80° , and (b) 24.5° - 40° .

Figure S12. FESEM images of the Ni–Co sulfides: (a, d). NiCo₂S₄, (b, e) Ni_{1.5}Co_{1.5}S₄, and (c, f) Ni₂CoS₄ after cycling for 2000 cycles at a current density of 5 A g^{-1} , respectively.

Figure S13. CV curves the nickel cobalt sulfides measured after 2000 charge and discharge cycles.

Supplementary Reference

- 1. Z. Wu, X. Pu, X. Ji, Y. Zhu, M. Jing, Q. Chen and F. Jiao, *Electrochim Acta*, 2015, **174**, 238-245.
- 2. L. F. Shen, J. Wang, G. Y. Xu, H. S. Li, H. Dou and X. G. Zhang, *Adv Energy Mater*, 2015, **5**, 1400977-1400984.
- 3. Y. M. Chen, Z. Li and X. W. Lou, Angew Chem Int Edit, 2015, 54, 10521-10524.
- 4. X. Xiong, G. Waller, D. Ding, D. Chen, B. Rainwater, B. Zhao, Z. Wang and M. Liu, *Nano Energy*, 2015, **16**, 71-80.
- 5. L. Yu, L. Zhang, H. B. Wu and X. W. Lou, *Angew Chem Int Edit*, 2014, **53**, 3711-3714.
- 6. J. Zhang, H. Gao, M. Y. Zhang, Q. Yang and H. X. Chuo, *Appl Surf Sci*, 2015, **349**, 870-875.
- 7. J. Pu, T. T. Wang, H. Y. Wang, Y. Tong, C. C. Lu, W. Kong and Z. H. Wang, *Chempluschem*, 2014, **79**, 577-583.
- 8. J. Pu, F. L. Cui, S. B. Chu, T. L. Wang, E. H. Sheng and Z. H. Wang, *Acs Sustain Chem Eng*, 2014, **2**, 809-815.
- 9. S. J. Peng, L. L. Li, C. C. Li, H. T. Tan, R. Cai, H. Yu, S. Mhaisalkar, M. Srinivasan, S. Ramakrishna and Q. Y. Yan, *Chem Commun*, 2013, **49**, 10178-10180.