## Supplementary information for:

## Metal-Organic Frameworks Based on Tri- and Penta-nuclear Manganese(II) Secondary Building Units Self-assembled by a V-Shaped Silicon-containing Dicarboxylate

Angelica Vlad, Mirela-Fernanda Zaltariov, Sergiu Shova, Ghenadie Novitchi, Cyrille Train, Maria Cazacu



Figure S1. Comparative FTIR spectra of the carboxylic acid (H<sub>2</sub>cpdps) and manganese(II) complexes 1 and 2.



**Figure S2**. Deconvoluted FTIR spectra in the range 1470-1340 cm<sup>-1</sup> for  $H_2$ cpdps – (a) and manganese(II) complexes 1 - (b) and 2 - (c).



Figure S3. Crystal structure packing of 1 viewed along *b* axis. Non-relevant h-atoms are omitted for clarity.



**Figure S4.** View of the crystal structure of **2** along the crystallographic axis *b*. H-atoms and solvate molecules are omitted for clarity.



**Figure S5.**  $\chi$ T versus T plots in logarithmic scale for 1 and 2. The solid lines correspond to the simulation according the Hamiltonians (eq. 1 and 2) with parameters described in the main text.



Figure S6. Field dependence of magnetization for 1 at 2.0, 3.0, 4.0 and 5.0 K. The solid lines correspond to the simulation according to the Hamiltonians given in eq. (1 main text) with  $J_a = -0.65$  cm<sup>-1</sup>;  $J_b = -1.3$  cm<sup>-1</sup>; g = 1.98.



**Figure S7.** Simultaneous field dependence of magnetization for **2** at temperature indicated in legend. The solid lines correspond to simulation according the Brillouin function with S=5/2; g = 2.0



**Figure S8.** FTIR spectra of the gases evolved during the heating of **2** and comparison with model compounds spectra.



Figure S9. Selected FTIR spectra of the gases evolved during the heating of 1 at indicated temperature.



Figure S10. IR spectra of compounds 1 and 2 before and after heating activation.

| Guest<br>compound<br>(R, Å) | Contact surface area     |      |                               |         | Solvent accessible surface |      |                               |         |
|-----------------------------|--------------------------|------|-------------------------------|---------|----------------------------|------|-------------------------------|---------|
|                             | % of unit cell<br>volume |      | Void volume (Å <sup>3</sup> ) |         | % of unit cell volume      |      | Void volume (Å <sup>3</sup> ) |         |
| Compound                    | 1                        | 2    | 1                             | 2       | 1                          | 2    | 1                             | 2       |
| N <sub>2</sub> (0.750)      | 35.7                     | 36.4 | 1275.17                       | 4654.59 | 18.0                       | 19.5 | 642.67                        | 2497.89 |
| Ar (0.940)                  | 31.1                     | 31.8 | 1110.83                       | 4063.19 | 12.8                       | 14.6 | 457.43                        | 1868.18 |
| CO <sub>2</sub> (1.935)     | 17.9                     | 19.2 | 640.97                        | 2454.79 | 1.6                        | 1.9  | 57.04                         | 243.03  |

**Table S1.** Theoretically estimated void volume values of the crystalline compounds accessible to different guests molecules after removal of disordered crystallization solvents by activation process