Supporting Information

From the traditional way of pyrolysis to tunable photoluminescent water

soluble carbon nano-onions for cells imaging and selective sensing of glucose

Kumud Malika Tripathi[‡],^aAnshu Bhati[‡],^bAnupriya Singh,^bNidhi Rani Gupta,^c Sankalp Verma,^d Sabyasachi Sarkar,^e* and Sumit Kumar Sonkar^{b*}

^aDepartment of Chemistry, Indian Institute of Technology Kanpur, Kanpur-208016, India. ^bDepartment of Chemistry, Malaviya National Institute of Technology, Jaipur, Jaipur-302017, India.

^cDepartment of Chemistry, GSSDGS Khalsa College, Patiala – 147001, India.

^dDepartment of Materials Science & Engineering, Indian Institute of Technology Kanpur, Kanpur-208016, India.

^eDepartment of Chemistry, Indian Institute of Engineering Science and Technology, Shibpur, Howrah-711103, India.

: Both the authors contributed equally

Contents:

1. Performance comparison

 Table S1. Performance comparison between various fluorescence sensors toward glucose molecule.

Methods	Response Time	detection limits	Ref.
i-motif DNA	30 min.	4 μΜ	[1]
APBA-CuInS ₂ QDs	40 min.	1.2 μmol L ⁻¹	[2]
Optical fiber	10 min.	0.05 μg/ml	[3]
CdTe-QDs	15 min.	50 nm	[4]
BSA-Au nanoclusters	60 min.	5.0×10 ⁻⁶ M	[5]
GOx immobilized on	5 min.	58µM	[6]
Bamboo inner cell membrane	2	-	
wsCNO	Immediate	1.3 X 10 ⁻² M	this study

2. Calculation of detection limit(LD) of glucose

The detection limit f glucose was calculated with the help of following equation:

LD=3SD/K

K represents the slope of liner fit curve of the fluorescence turn on values (I/Io) vs.glucose concentration and SD denoted the the standard deviation. As demonstrated in Figure S2, the K value isobtained to be 234,46, whereas SD is1.05. The LD was thus calculated to be 1.3 X 10^{-2} M.

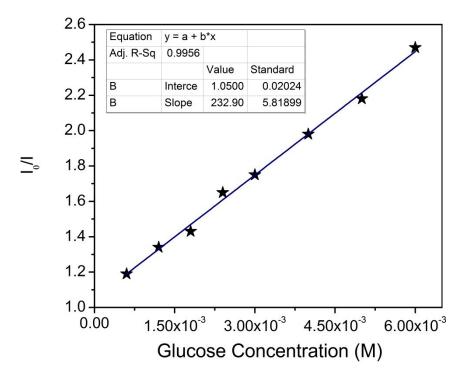


Figure S2. Calibration curve for fluorescence turn on by glucose

References:

- 1. Q. Ke, Y. Zheng, F. Yang, H. Zhang and X. Yang, *Talanta*, 2014, **129**, 539–544.
- 2. Z. Liu, L. Liu, M. Sun and X. Su, *Biosens. Bioelectron.*, 2015, 65, 145–151.
- 3. D. L. Meadows and J. S. Schultz. Anal. Chim. Acta., 1993, 280, 21–30.
- 4. B. Tang, L. Cao, K. Xu, L. Zhuo, J. Ge, Q. Li and L. Yu. *Chem. Eur. J.* 2008, **14**, 3637–3644.
- L. Jin, L. Shang, S. Guo, Y. Fang, D. Wen, L. Wang, J. Yin and S. Dong, *Biosens Bioelectron*. 2011, 26, 1965–1969.
- 6. X. Yang, Z. Zhou, D. Xiao and M. M. F. Choi , *Biosens Bioelectron*. 2006, **21**, 1613–1620.