Supporting Information

A particle-carbon matrix architecture for long-term cycle stability of ZnFe₂O₄ anode

Hongyun Yue^{1,†,‡,§}, Qiuxian Wang^{1,†,‡,§}, Ting Du^{†,‡,§}, Wanli Zhang[†], Yun Qiao^{†,‡,§}, Hongyu Dong ^{†,‡,§}, Yanhong Yin ^{†,‡,§} and Shuting Yang^{*†,‡,§}

[†]School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, P. R. China.

[‡] National and Local Joint Engineering Laboratory of Motive Power and Key Materials,

Xinxiang, Henan 453007, P. R. China.

[§]Collaborative Innovation Center of Henan Province for Motive Power and Key Materials,

Henan Normal University, Xinxiang, Henan 453007, China.

Corresponding Author

*E-mail: shutingyang@foxmail.com; Tel: (+86)-373-3326439

Figure S1. Nitrogen adsorption/desorption isotherms and pore size distribution plots (inset) of

ZFC7 and ZFO.

Figure S2. Raman spectra of ZFC7. The excitation wavelength is 633 nm.

Figure S3. TG curves of as-synthesized ZFC7 with a heating rate of 10 °C min⁻¹ in flowing

air atmosphere.

Figure S4. FESEM images of ZFC7 (a), (c) and ZFC7-4 (b), (d); the atom ratio of Zn, Fe, O and

C is shown inset.

Figure S5. Cycling performances of ZFC7 and ZFO at 1000 mA g⁻¹ with PVDF binder.