Electronic supplementary information

Heterogeneous O-arylation of nitroarenes with substituted phenols

over copper immobilized mesoporous silica catalyst#

Tanmoy Maity, Susmita Bhunia, Soma Das and Subratanath Koner*

[#]All authors have equal contribution.

Fig. S1 Plot for optimal copper loading

Fig. S2 Plot showing hot filtration test for O–arylation reaction of phenol with *p*-nitrobenzaldehyde

Fig. S3 Bar diagram showing recyclability of the catalyst for O-arylation of phenol

Fig. S4 PXRD patterns of (a) pristine S@Cu and (b) recovered S@Cu

Fig. S5 FTIR spectra of (a) pristine S@Cu and (b) recovered S@Cu

Fig. S6 TEM images of (a) pristine S@Cu and (b) recovered S@Cu

Fig. S7 SEM images of (a) pristine S@Cu and (b) recovered S@Cu

Scheme S1 (a) Modification of S–15 channel wall: AETPS/toluene, (b) condensation with pyridine-2-aldehyde in methanol, (c) metal complex formation: CuCl₂·2H₂O/methanol/reflux.

Scheme S2 (a) Organic modification of SBA-15: AETPS/toluene, (b) anchoring of

p-nitroacetophenone onto SBA-15 (in methanol)

Scheme S3 Three-phase test for O-arylation reaction

Table S1 N₂ adsorption characteristics of supports and catalysis at 77 K: specific surface area, S_{BET} (m² g⁻¹); pore volume (cm³ g⁻¹); half pore width, D_{NLDFT} (Å)

Materials	$S_{\rm BET}$	Pore volume	$D_{ m NLDFT}$
SBA-15	1431	1.62	31
S@Am	750	1.02	24
S@Cu	312	0.39	22

Table S2 Optimization of reaction conditions^a

Entry	Catalyst	Base	Solvent	Yield ^b
				(%)
1	_	K ₂ CO ₃	DMF	_
2	S@Cu	K_2CO_3	DMF	91
3	S@Cu	K_2CO_3	DMSO	87
4	S@Cu	K_2CO_3	Toluene	15
5	S@Cu	K_2CO_3	Acetonitrile	31
6	S@Cu	K_2CO_3	Methanol	58
7	S@Cu	K_2CO_3	Ethyleneglycol	64
8	S@Cu	K_2CO_3	Dioxane	62
9	S@Cu	КОН	DMF	55
10	S@Cu	Na ₂ CO ₃	DMF	62
11	S@Cu	Cs_2CO_3	DMF	90
12	S@Cu	CH ₃ COONa	DMF	—
13	S@Cu	tBuOK	DMF	21
14	S@Cu	DABCO	DMF	_
15°	S@Cu	K_2CO_3	DMF	58 ^d
16 ^e	S@Cu	K_2CO_3	DMF	79
17	S@Am+ CuCl ₂ ·2H ₂ O	K_2CO_3	DMF	25
18	$S@SB+CuCl_2 \cdot 2H_2O$	K_2CO_3	DMF	29
19	CuCl ₂ ·2H ₂ O	K_2CO_3	DMF	73

^a Reaction condition: *p*-nitrobenzaldehyde (1.1 mmol), phenol (1.0 mmol), base (1.2 mmol), catalyst (0.025 mol%), solvent (3 mL) at 100 °C for 8 h.

^b Isolated yield.

^c temperature was 60 °C.

^d Isolated yield at 20 h.

^e temperature was 120 °C at 8 h.

Characterization of products

1a; δ_H (300 MHz, CDCl₃, ppm) 6.98–7.11 (m, 4H), 7.23–7.28 (m, 1H), 7.41–7.46 (m, 2H), 8.16–
8.20 (m, 2H); δ_C (75 MHz; CDCl₃) 117.11, 120.54, 125.43, 125.93, 130.34, 132.63, 142.65,

154.73, 163.38; *m/z* 216.0592 [(M+H)⁺, 100%]; Elemental analysis (found: C, 66.93; H, 4.24; N, 6.49. for C₁₂H₉NO₃ requires: C, 66.97; H, 4.22; N, 6.51%).

1b; $\delta_{\rm H}$ (300 MHz, CDCl₃, ppm) 6.99–7.07 (m, 3H), 7.17–7.22 (m, 2H), 7.39 (t, J = 7.9 Hz, 2H), 7.47–7.53 (m, 1H), 7.94–7.97 (m, 1H); δ_C (75 MHz; CDCl₃) 117.11, 120.54, 125.43, 125.93, 130.34, 132.63, 142.65, 154.73, 163.38; Elemental analysis (found: C, 66.98; H, 4.24; N, 6.52. for C₁₂H₉NO₃ requires: C, 66.97; H, 4.22; N, 6.51%).

1c; $\delta_{\rm H}$ (300 MHz, CDCl₃, ppm) 2.38 (s, 3H), 6.98 (d, J = 9.2 Hz, 4H), 7.22 (d, J = 8.2 Hz, 2H), 8.16–8.19 (m, 2H); δ_C (75 MHz; CDCl₃) 20.82, 116.76, 120.45, 125.89, 125.93, 130.79, 135.21, 142.46, 152.35, 163.78; m/z 230.0736 [(M+H)⁺, 100%]; Elemental analysis (found: C, 68.13; H, 4.86; N, 6.12. for C₁₃H₁₁NO₃ requires: C, 68.11; H, 4.84; N, 6.11%).

1d; $\delta_{\rm H}$ (300 MHz, CDCl₃, ppm) 2.35 (s, 3H), 6.94–6.98 (m, 3H), 7.13–7.19 (m, 3H), 7.47 (m, 1H), 7.93 (d, J = 8.3 Hz, 1H); δ_C (75 MHz; CDCl₃) 20.75, 119.39, 119.85, 122.64, 125.66, 130.56, 133.99, 134.39, 141.13, 151.31, 153.32; Elemental analysis (found: C, 68.15; H, 4.85; N, 6.14. for C₁₃H₁₁NO₃ requires: C, 68.11; H, 4.84; N, 6.11%).

1e; $\delta_{\rm H}$ (300 MHz, CDCl₃, ppm) 3.83 (s, 3H), 6.93–7.03 (m, 6H), 8.17 (d, J = 9.2 Hz, 2H); δ_C (75 MHz; CDCl₃) 55.67, 115.31, 116.38, 121.83, 125.89, 142.34, 147.86, 157.19, 164.17; m/z 246.0634 [(M+H)⁺, 100%]; Elemental analysis (found: C, 63.69; H, 4.54; N, 5.73. for C₁₃H₁₁NO₄ requires: C, 63.67; H, 4.52; N, 5.71%).

1f; δ_H (300 MHz; CDCl₃) 2.37 (3H, s), 6.99-6.94 (4H, m), 7.21 (2H, d, J = 7.8 Hz), 7.56 (2H, d, J = 8.4 Hz); δ_C (75 MHz; CDCl₃) 20.83, 105.49, 117.59, 117.91, 118.90, 120.39, 129.94, 134.08, 134.92, 152.42, 162.07; *m/z* 210.0896 [(M+H)⁺, 100%]; Elemental analysis (found: C 80.36, H 5.30, N 6.69; for C₁₄H₁₂O₂ requires: C 80.34, H 5.37, N 6.63%).

1g; δ_H (300 MHz; CDCl₃) 2.36 (3H, s), 6.85-7.05 (5H, m), 7.29 (1H, t, J = 7.6 Hz), 7.57-7.59 (2H, m); δ_C (75 MHz; CDCl₃) 21.37, 105.68, 117.34, 117.90, 118.89, 121.04, 125.97, 129.95, 134.10, 140.57, 154.78, 161.79; Elemental analysis (found: C 80.36, H 5.30, N 6.69; for C₁₄H₁₂O₂ requires: C 80.32, H 5.28, N 6.62%).

1h; δ_H (300 MHz; CDCl₃) 2.17 (3H, s), 6.89-6.99 (3H, m), 7.17-7.30 (3H, m), 7.57 (2H, dd, J = 1.9 and J = 6.8 Hz); δ_C (75 MHz; CDCl₃) 16.02, 105.29, 116.80, 118.94, 121.10, 125.73, 127.68, 130.55, 131.95, 134.19, 134.58, 152.43, 161.76; Elemental analysis (found: C 80.36, H 5.30, N 6.69; for C₁₄H₁₂O₂ requires: C 80.39, H 5.34, N 6.72%).

1i; δ_H (300 MHz; CDCl₃) 3.83-3.85 (3H, m), 6.91-7.02 (6H, m), 7.54-7.58 (2H, m); δ_C (75 MHz; CDCl₃) 55.67, 105.29, 115.25, 117.15, 118.94, 121.80, 134.07, 147.89, 157.03, 162.51; *m/z* 226.0869 [(M+H)⁺, 100%]; Elemental analysis (found: C 74.65, H 4.92, N 6.22; for C₁₄H₁₂O₂ requires: C 74.62, H 4.97, N 6.20%).

1j; δ_H (300 MHz; CDCl₃) 2.60 (3H, s), 6.99-6.94 (4H, m), 7.09 (4H, dd, J = 2.1 and J = 8.7 Hz), 7.66 (2H, d, J = 8.7 Hz), 8.01 (2H, d, J = 8.7 Hz); δ_C (75 MHz; CDCl₃) 26.54, 107.32, 118.47, 119.24, 130.84, 133.65, 134.36, 159.36, 160.06, 196.57; *m*/*z* 238.0817 [(M+H)⁺, 100%]; Elemental analysis (found: C 75.94, H 4.67, N 5.90; for C₁₄H₁₂O₂ requires: C 75.98, H 4.69, N 5.93%).

1k; δ_H (300 MHz; CDCl₃) 6.97-7.03 (4H, m), 7.13-7.19 (1H, m), 7.34 (2H, t, J = 7.8 Hz), 7.77 (2H, d, J = 8.4 Hz), 9.85 (1H, s); δ_C (75 MHz; CDCl₃) 117.61, 120.40, 125.91, 130.14, 131.33, 131.93, 132.34, 155.17, 163.24, 190.71; *m/z* 199.0889 [(M+H)⁺, 100%]; Yield ca. 93% based on

11; δ_H (300 MHz; CDCl₃) 2.37 (3H, s), 6.96-7.04 (4H, m), 7.21 (2H, d, J = 8.2 Hz), 7.82 (2H, d, J = 8.6 Hz), 9.90 (1H, s); δ_C (75 MHz; CDCl₃) 20.81, 116.19, 117.23, 117.57, 120.39, 121.05, 130.64, 131.09, 131.90, 134.69, 152.72, 163.67, 190.69; *m/z* 213.0905 [(M+H)⁺, 100%]; Elemental analysis (found: C 79.25, H 5.72; for C₁₄H₁₂O₂ requires: C 79.22, H 5.70%).

1m; δ_H (300 MHz; CDCl₃, TMS) 2.39 (3H, s), 6.91 (2H, d, J = 8.3 Hz), 7.05-7.09 (3H, m), 7.31 (1H, t, J = 7.6 Hz), 7.85-7.88 (2H, m), 9.94 (1H, s); δ_C (75 MHz; CDCl₃, TMS) 21.36, 117.39, 117.56, 121.05, 125.76, 129.85, 131.21, 131.92, 140.45, 155.08, 163.37, 190.73; Elemental analysis (found: C 79.24, H 5.71; for C₁₄H₁₂O₂ requires: C 79.22, H 5.70%).

1n; δ_H (300 MHz; CDCl₃, TMS) 2.19 (3H, s), 6.95-7.02 (3H, m), 7.17-7.31 (3H, m), 7.83 (2H, d, J = 8.7 Hz), 9.91 (1H, s); δ_C (75 MHz; CDCl₃, TMS) 16.04, 116.42, 121.15, 125.53, 127.57, 130.59, 130.92, 131.85, 132.04, 152.73, 163.41, 190.72; *m/z* 213.1019 [(M+H)⁺, 30%]; Elemental analysis (found: C 79.23, H 5.69; for C₁₄H₁₂O₂ requires: C 79.22, H 5.70%).

10; δ_H (600 MHz; CDCl₃, TMS) 1.15-1.27 (3H, m), 2.59-2.68 (2H, m), 6.93-7.10 (4H, m), 7.22-7.23 (2H, m), 7.82 (2H, d, J = 8.4 Hz), 9.89 (1H, s); δ_C (150 MHz; CDCl₃, TMS) 15.75, 28.36, 117.39, 120.53, 129.56, 132.05, 141.28, 152.96, 163.80, 190.91; *m/z* 227.0817 [(M+H)⁺, 100%]; Elemental analysis (found: C 79.60, H 6.22; for C₁₅H₁₄O₂ requires: C 79.62, H 6.24%).

