Supporting Information

In situ synthesis of highly-active Pt nanoclusters via thermal decomposition for high-temperature catalytic reactions

Shao-Cong Ouyang^{1,†}, Li-Wei Wang^{2,†}, Xi-Wen Du¹, Cui Zhang^{2,*}, Jing Yang^{1,*}

¹Institute of New-Energy Materials, Tianjin Key Laboratory of Composite and Functional Materials, School of Materials Science and Engineering, Tianjin University, Tianjin 300072, P. R. China.

²Institute of New Catalytic Materials Science, College of Chemistry, Nankai University, Tianjin 300071, P. R. China.

*Corresponding authors.

E-mail address: yang_jing@tju.edu.cn (J. Yang); zhangcui@nankai.edu.cn (C. Zhang).

[†]These authors contribute equally to this work.

Figure S1. FTIR spectra of Pt(acac)₂, CS, Pt(acac)₂/CS composites with a Pt content of 2.83 wt%, the composites after being annealed at 320 °C for 30 min in nitrogen atmosphere, and the composites following the catalytic dehydrogenation reaction.

Figure S2. TEM images of as-prepared samples with different Pt contents. (a) 0.18wt%, (b) 0.37wt%, and (c) 0.60wt%.

Figure S3. (a) TEM image of the Pt nanoclusters on CS with a Pt loading of 2.83wt%.(b) The size histogram with Gaussian fitting for the NPs. (c) EDX spectrum of the Pt/C composites. The inset is an enlarged view.

Catalysts	Preparation technique	Temp (°C)	H ₂ evolution rate (mmol/g _{met} /min)	Ref.
.4wt% Pt/CB	Wet impregnation	300	342	[21]
10%wt% Pt/ACC	Wet impregnation	298	520	[24]
3wt% Pt/La ₂ O ₃	Wet impregnation	350	21.1	[25]
1wt% Pt/La _{0.7} Y _{0.3} NiO ₃	Wet impregnation	350	45.76	[25]
3wt% Pt/V ₂ O ₅	Wet impregnation	350	330	[26]
3wt% Pt/Y2O3	Wet impregnation	350	772	[26]
0.37wt% Pt/CS	In-situ method	320	575	This work

Table S1. Hydrogen evolution rate of MCH over various Pt-based catalysts.

Figure S4. The durability of the catalyst with a Pt loading of 0.68wt% at 320 °C.