Electronic Supplementary Material (ESI) for RSC Advances. This journal is © The Royal Society of Chemistry 2016

Supporting Materials

Structurally Confined Ultrafine NiO Nanoparticles on Graphene as Highly

Efficient and Durable Electrode Material for Supercapacitors

Yi Cheng^a, Jian Pan^a, Martin Saunders^b, Shikui Yao^a, Pei Kang Shen^c, Huanting

Wang^d, San Ping Jiang^{a*}

^aFuels and Energy Technology Institute & Department of Chemical Engineering,

Curtin University, Perth, WA 6102, Australia

<u>S.Jiang@curtin.edu.au</u> (SP Jiang)

^bCentre for Microscopy, Characterisation and Analysis (CMCA), The University of Western Australia, Clawley, WA 6009, Australia

°Collaborative Innovation Center of Sustainable Energy Materials, Guangxi

University, Nanning 530004, China

Yi Cheng^a, Jian Pan^a, Martin Saunders^b, Shikui Yao^a, Pei Kang Shen^c,

San Ping Jiang^{a*}

Figures.

Figure S2. The typical TEM images of as received graphene sheet.

Figure S3. CV curves at different scan rate of A) NiO, B) NiO@MnO_x(1:0.2), C) NiO@MnO_x(1:0.4), and D) NiO@MnO_x(1:1).

Figure S4. Charge and discharge curves at different current densities of A) NiO, B) NiO@ $MnO_x(1:0.2)$, C) NiO@ $MnO_x(1:0.4)$, and D) NiO@ $MnO_x(1:1)$.