Improving Electrochemical Performance of Li_{1.2}Mn_{0.52}Co_{0.13}Ni_{0.13}O₂ by Surface Nitrogen Doping via the Plasma Treatment

Bing Li^a, Chao Li^b, Zulai Cao^b, Jing wang^b, Jinbao Zhao^{*a,b}

^aCollege of Energy, School of Energy Research, Xiamen University, Xiamen, 361005, P. R. China
^bState Key Lab of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials,
College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, P. R. China.
E-mail: jbzhao@xmu.edu.cn

In order to further discuss the effect of surface nitrogen doping, the diffusion coefficient of Li⁺ can be calculated from the EIS plots (Fig.4b) in the the Warburg region using the following equation:

$$Z' = Rs + Rct + \sigma \omega^{-0.5}$$
(1)

$$D = R^2 T^2 / 2A^2 n^4 F^4 C^2 \sigma^2$$
 (2)

where R is the gas constant, T is the absolute temperature, A is the surface area of the cathode electrode, n is the number of electrons per molecule during oxidization, F is the Faraday constant, C is the Li⁺ concentration, and σ is the Warburg factor associated with Z_{re}. Due to Z' is proportional to $\sigma \omega^{-1/2}$, the value of σ can be obtained by linear fitting of the relationship plot Z' - $\omega^{-0.5}$ (Fig. S1). According to equation (1, 2), the apparent diffusion coefficient D_{Li} can be obtained.

The diffusion coefficient of Li^+ in pristine is 5.16×10^{-15} cm²·s⁻¹, while that of the P1 is 1.49×10^{-14} cm²·s⁻¹. Obviously, the diffusion coefficient of Li^+ is greatly improved due to the surface nitrogen doping.

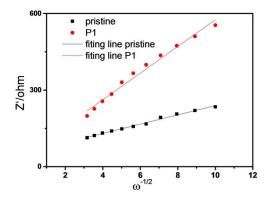


Fig. S1 Z'-ω^{-0.5} pattern in the low-frequency region obtained from EIS measurements of pristine and P1.