Electronic Supplementary Material (ESI) for RSC Advances. This journal is © The Royal Society of Chemistry 2016

SUPPORTING INFORMATION

DOI:

<u>Title:</u> A catalyst-free, one-pot multicomponent synthesis of spirobenzimidazoquinazolinones via Knoevenagel-Michael-Imine pathway: A microwave assisted approach

<u>Author(s):</u> Preeti Maloo, Tapta Kanchan Roy, Devesh M. Sawant ^a, Ram T. Pardasani ^b, Manikrao M. Salunkhe

Sr. No	Table of contents	Page No
1	General Considerations	1
2	Detailed results of Screening	1
3	Control experiment	2
1	Crystal data parameters for compounds An	5
4	Crystal data parameters for compounds 4a	6
5	Crystallography data for compound 4a and 7a	8
6	Copies of 1H, 13C, DEPT and HRMS spectra for compounds 4(a - c)	9
7	Copies of1H, 13C, DEPT and HRMS spectra for compounds 7(a - n)	15
8	Optimized Transition States (T.SI and III)	43

1. General Considerations:-

All chemicals were purchased from Sigma Aldrich and all solvents were analytically pure grade were used as received without any further purification. A CEM microwave synthesizer of (Model-Discover System-908010)voltage 180/264 and frequency 50/60Hz, operating by utilizing 700 W with maximum microwave power level of 300 W, was employed for the synthesis work Some of the derivatives of compound 5 were synthesized according to literature methods.²⁹Analytical TLC were performed using 2.5X 5 cm plates coated with 0.25 mm thickness of silica gel 60F-254 Merck and visualization was accomplished with UV light, iodine and or KMnO₄ staining.¹HNMR ,¹³CNMR and DEPT-135 spectra were obtained from Bruker's 500 spectrometer (at 500 MHz and 125 MHz respectively) and are reported in ppm (δ) with respect to tetramethylsilane (TMS, 0.00 ppm) and solvent (DMSO-d₆ = 39.43 ppm)as an internal standard. The abbreviations are used: s=singlet, d=doublet, t=triplet, q=quartet, dd=double doublet, m=multiplet, br.s=broad singlet &br=broad signal. Melting points were recorded on Buchi M-565 melting point apparatus and are uncorrected. Mass spectra were recorded on LCMS MS spectrometer Advion, USA using Electron Spray Ionization (ESI) in Positive/Negative mode. IR data were recorded on Perkin Elmer FT-IR spectrometer using KBr pellets. All the computational analysis has been carried out using Gaussian 09 program suit.

2. Detailed results of Screening

2.1 Table S1: Screening of Catalyst

		N MW → NH ₂ EtOH-H ₂ O → N Catalyst (30 mol%	
1	2 (i) 3		[⊓] 4(a)
S.No.	Catalyst	Conditions	Yield (%) ^a
1.	p-TSA	160 °C, 5 min	20
2.	Yb(OTF) ₃	160 °C, 5 min	No reaction
3.	Et ₃ N	160 °C, 5min	48
4.	PEG	160 °C, 5 min	30

~

~

^aIsolated yield

2.2 Table S2: Solvent effect

	+ 0 2 (i)		MW on-catalytic ent,conditions	O O N H 4(a)
S.No.	Solvent	С	onditions	Yield (%) ^a
1	EtOH-H ₂ O	16	50°C, 5min	55
2	H_2O	16	50°C, 5min	65
3	Methanol	16	50°C, 5 min	47
4	Ethanol	16	50°C, 5min	75

2.3 Table S3: Temperature effect

S.No.	Temperature	Conditions	Yield (%) ^a
1	140 °C	5min	50
2	150 °C	5min	55
3	160 °C	5min	75
4	170 °C	5min	70
5	180 °C	5min	60

^aIsolated yield

2.4 Table S4: Time effect

S.No.	Time (min)	Yield (%) ^a
1	3	65
2	5	75
3	7	74
4	9	72
5	11	70
6	15	40

^{*a*}Isolated yiel \overline{d}

2.5 *Table S5:* Power effect

S.No.	Power (watt)	Yield (%) ^a
1	120	10
2	150	54
3	180	75

S.No.	Catalyst	Conditions	Yield (%) ^a	
1.	p-TSA	160 °C, 5 min	40	
2.	Yb(OTF) ₃	160 °C, 5 min	No reaction	
3.	Et ₃ N	160 °C, 5min	10	
4.	PEG	160 °C, 5 min	20	

^aIsolated yield

2.7 Table S7: Solvent effect

S.No.	Solvent	Conditions	Yield (%) ^a
1	EtOH-H ₂ O	160°C, 5min	20
2	H_2O	160°C, 5min	65
3	Methanol	160°C, 5 min	10
4	Ethanol	160°C, 5 min	75

^aIsolated yield

2.8 Table S8: Temperature effect

	=0 + 0 2 (i)	$N = NH_2 MW$ $EtOH$ H $Temperature, Conditions$	N N N N N N N N N N
S.No.	Temperature	Conditions	Yield (%) ^a
1	140 °C	5min	50
2	160 °C	5 min	75
3	180 °C	5 min	70

^aIsolated yield

2.9 Table S9: Time effect

^aIsolated yield

3. Control experiment:

We designed control experiments to isolate intermediate 5, by the Knoevenagel condensation reaction of compound 1 and 2(i) as shown in scheme A. For this reaction, was carried out using *p*-TSA as catalyst under ethanol reflux and after 1 hr a new non-polar spot appeared on TLC. We then isolated and characterised that spot as intermediate 5, by HRMS and carried out its subsequent reaction with compound 3 under standard condition. Futher, progress of the reaction was then monitored on TLC and product spot first appeared after 2 hrs and then its intensity goes on increasing and intermediate spot diminishes with time and after 12 hrs no intermediate left on TLC and product spot gets intensified as shown in Table 1 of manuscript.

Scheme S1: Control Experiment for synthesis of intermediate 5

Scheme S2: Control Experiment for synthesis of product 4a

4. Crystal data parameters for compounds 4a

Compound	4a	6a
Formula	C ₂₇ H ₂₁ N ₃ O ₂	$C_{23}H_{20}N_4O_2$
Formula weight	419.47	384.43
Crystal system	Triclinic	Triclinic
Space group	P-1	<i>P</i> -1
Temperature (K)	100(2)	100(2)
a (Å)	9.0977(4)	9.2047(4)
b (Å)	11.2713(5)	14.1206(7)
<i>c</i> (Å)	11.4682(5)	16.6580(8)
α (°)	118.8560(11)	75.9437(14)
β (°)	92.1720(13)	74.4957(14)
γ (°)	91.3380(12)	87.8667(15)
Volume (Å ³)	1028.06(8)	2022.99(17)
Ζ	2	2
2θ range for data collection (°)	5.88 to 50.49	4.41 to 56.786
Reflections	15709 / 3708	31479 / 10157
collected/unique	1970779700	514797 10157
$R_{\rm int} / R_{\rm sigma}$	0.0339 / 0.0415	0.0747/0.1121
Data/restraints/parameters	3708 / 0 / 295	10157/0/527
Goodness-of-fit on F ²	1.055	0.967
Final <i>R</i> indices $[I > 2\sigma(I)]^a$	$R_1 = 0.0400, wR_2$	$R_1 = 0.0660, wR_2 =$
L ()]	= 0.0955	0.1478
<i>R</i> indices (all data) ^a	$R_1 = 0.0508, wR_2$	$R_1 = 0.1303, wR_2 =$
~ /	= 0.1012	0.1647
Largest residuals (e.Å ⁻³)	0.22 and -0.27	0.33 and -0.39

6. Copies of 1H, 13C, DEPT and HRMS spectra for compounds 4(a -c)

¹³C NMR spectrum of compound 4a

DEPT-135spectrum of compound 4a

HRMSspectrum of compound 4a

¹H NMR spectrum of compound 4b

¹³C NMR spectrum of compound 4b

PM-ADI4-4(b)

DEPT-135spectrum of compound 4b

HRMSspectrum of compound 4b

13C NMRspectrum of compound 4c

DEPT-135 NMRspectrum of compound 4c

HRMS spectrum of compound 4c

7. Copies of1H, 13C, DEPT and HRMS spectra for compounds 7(a -n)

13C NMRspectrum of compound 7a

DEPT-135 NMRspectrum of compound 7a

HRMS spectrum of compound 7a

13C NMRspectrum of compound 7b

DEPT-135 NMRspectrum of compound 7b

HRMS spectrum of compound 7b

13C NMR spectrum of compound 7c

210 200 190 180 170 160 150 140 130 120 110 100

N

90 80 70 60 50 40 30 20 10 0

ppm

DEPT-135 NMR spectrum of compound 7c

HRMS spectrum of compound 7c

13C NMR spectrum of compound 7d

EPT-135 NMR spectrum of compound 7d

HRMS spectrum of compound 7d

13 C NMRspectrum of compound 7e

DEPT-135 NMRspectrum of compound 7e

HRMS spectrum of compound 7e

13C NMRspectrum of compound 7f

DEPT-135 NMRspectrum of compound 7f

assspectrum of compound 7f

PM-ADA4-4(j)

Μ

HRMS spectrum of compound 7g

1H NMRspectrum of compound 7h

DEPT-135 NMR spectrum of compound 7h

1H NMRspectrum of compound 7i

HRMS spectrum of compound 7h

PM-ADA4-4(I)

13C NMR spectrum of compound 7i

DEPT-135 NMR spectrum of compound 7i

HRMS spectrum of compound 7i

DEPT-135 NMR spectrum of compound 7j

DEPT-135 NMRspectrum of compound 7k

HRMS spectrum of compound 7k

1H NMRspectrum of compound 71

13C NMRspectrum of compound 71

DEPT-135 NMRspectrum of compound 71

HRMS spectrum of compound 71

13C NMRspectrum of compound 7m

DEPT-135 NMRspectrum of compound 7m

HR

MS spectrum of compound 7m

13C NMRspectrum of compound 7n

DEPT-135 NMRspectrum of compound 7n

HRMS spectrum of compound 7n

HRMS spectrum of compound 5

8. Optimized Transition States

T.S.-III

