Electronic Supplementary Material

A turn-on fluorescent sensor for relay recognition of two ions: From F⁻-selective sensor to highly Zn²⁺-selective sensor by tuning electronic effects

Wen-Juan Qu, Jie Guan, Tai-Bao Wei, Guo-Tao Yan, Qi Lin, and You-Ming Zhang*

E-mail: zhangnwnu@126.com[†]

Key Laboratory of Eco-Environment-Related Polymer Materials, Ministry of Education of China; Key Laboratory of Polymer Materials of Gansu Province; College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, Gansu, 730070. P. R. China

*Corresponding author

Tel: +086 9317973191; E-mail address: zhangnwnu@126.com

Contents

1. General Methods
2. Synthesis of sensor molecule L24
3. Absorbance spectra of L2 in DMSO in the presence of fluoride anions5
4. Plot of fluorescence intensity depending on the concentration of zinc ions.6
5. Determination of Detection Limit7
6. The UV-vis spectroscopy and fluorescence spectroscopy for the stability
and reproducibility of the sensor L28
7. IR spectra of sensor L2 and after adding fluoride anions
8. IR spectra of L2–F and after adding zinc ions10
9. The Job's plot examined between zinc ions and L2–F11
10. ESI/MS of L2
11. ESI/MS of L2-F with zinc13
12. ¹ H–NMR spectrum of L214
13. ¹³ C–NMR spectrum of L2

1. General Methods

Fresh double distilled water was used throughout the experiment. All other reagents and solvents were commercially available at analytical grade and were used without further purification. ¹H–NMR and ¹³C–NMR spectra were recorded on an Agilent DD2 at 600 MHz spectra. ¹H chemical shifts are reported in ppm downfield from tetramethylsilane (TMS, δ scale) with the solvent resonances as internal standards. UV–visible spectra were recorded on a Shimadzu UV–2550 spectrometer. Photoluminescence spectra were performed on a Shimadzu RF–5301 fluorescence spectrophotometer. Melting points were measured on an X–4 digital melting-point apparatus. The infrared spectra were performed on a Digilab FTS–3000 FT–IR spectrophotometer.

All the UV–vis experiments were carried out in DMSO on a Shimadzu UV–2550 spectrometer. Any changes in the UV–vis spectra of the synthesized compound were recorded on addition of perchlorate salts while keeping the ligand concentration constant $(2.0 \times 10^{-5} \text{ M})$ in all experiments. perchlorate salt $(4.0 \times 10^{-4} \text{ M})$ of anions (Fe³⁺, Hg²⁺,Ag⁺, Ca²⁺, Cu²⁺, Co²⁺, Ni²⁺, Cd²⁺, Pb²⁺, Zn²⁺, Cr³⁺, and Mg²⁺) and Tetrabutylammonium salt $(1.0 \times 10^{-3} \text{ M})$ of anions (F⁻, Cl⁻, Br⁻, I⁻, AcO⁻, H₂PO₄⁻, HSO₄⁻ and ClO₄⁻) and sodium salt $(1.0 \times 10^{-3} \text{ M})$ of anions (CN⁻) were used for the UV–vis experiments.

All the fluorescence spectroscopy was carried out in DMSO on a Shimadzu RF– 5301 spectrometer. Any changes in the fluorescence spectra of the synthesized compound were recorded on addition of perchlorate salts while keeping the ligand concentration constant (2.0×10^{-5} M) in all experiments. perchlorate salt (4.0×10^{-4} M) of anions (Fe³⁺, Hg²⁺,Ag⁺, Ca²⁺, Cu²⁺, Co²⁺, Ni²⁺, Cd²⁺, Pb²⁺, Zn²⁺, Cr³⁺, and Mg²⁺) and Tetrabutylammonium salt (1.0×10^{-3} M) of anions (F⁻, Cl⁻, Br⁻, I⁻, AcO⁻, H₂PO₄⁻, HSO₄⁻ and ClO₄⁻) and sodium salt (1.0×10^{-3} M) of anions (CN⁻) were used for the fluorescence experiments For ¹H–NMR titrations, the solution of L2 was prepared in DMSO– d_6 and the appropriate concentrated solution of guest was prepared in DMSO– d_6 . Aliquots of the two solutions were mixed directly in NMR tubes.

2. Synthesis of sensor molecule L2

Compound L2 can be readily prepared by a simple and low-cost amide reaction of naphtha [2, 1-b] furan-2-carbonyl chloride and 8-aminoquinoline (Scheme S1). naphtha [2, 1-b] furan-2-carbonyl chloride (0.462 g, 2 mmol), 8-aminoquinoline (0.360 g, 2.5 mmol) and 2.5mml triethylamine (Et₃N) were combined in hot absolute tetrahydrofuran (30 mL). The solution was stirred under reflux for 6 hours. After cooling to room temperature, the yellow precipitate was filtered, washed three times with hot absolute tetrahydrofuran, then recrystallized with THF to give a vellow powder product L2 (1.56 mmol) in 78% (m. p. >300 °C), IR: (KBr, cm⁻¹) v: 3338 (-NH-), 3118 (C=CH), 3046 (ArH), 1681 (C=O), 1596 (C=C), 1564 (C=N), 1531 (C=C), 1487 (C–N). ¹H–NMR (DMSO–d₆, 600 MHz): δ 10.94 (1H, s, NH), 9.08 (1H, s, C=CH), 8.94 (1H, d, ArH), 8.57-8.52 (3H, m, ArH), 8.14-8.04 (3H, m, ArH), 7.82–7.62(5H, m, ArH); ¹³C–NMR (DMSO–*d*₆, 150 MHz): δ 155.85, 152.48, 149.32, 147.84, 137.62, 137.76, 133.40, 130.11, 128.88, 128.77, 127.81, 127.31, 127.03, 125.53, 123.88, 122.55, 122.46, 116.35, 112.58, 111.10, 109.67, 109.22; Anal. calcd for C₂₂H₁₄N₂O₂: C, 78.11, H, 4.14, N, 8.28, O, 9.47; found C, 78.07; H, 4.11; N, 8.33; 0, 9.49.

Scheme S1 Synthesis of the sensor compound L2.

3. Absorbance spectra of L2 in DMSO in the presence of fluoride anions

Fig. S1: Absorbance spectra of **L2** in DMSO in the presence of fluoride anions (20 equiv.). Inset: photograph showing the change in color of the solution of **L2** in DMSO after addition of fluoride

anions (20 equiv.).

4. Plot of fluorescence intensity depending on the concentration of zinc ions

Fig. S2: A plot of fluorescence intensity depending on the concentration of zinc ions in the range from 0 to 5 equivalents in L2–F.

5. Determination of Detection Limit

Linear Equation: $Y = 28.0669 \times X + 299.9236$ R = 0.979

$$S = 2.8067 \times 10^7$$
 $\delta = \sqrt{\frac{\Sigma(F - F)2}{(N - 1)}} = 1.9647 (N = 15)$ K

= 3

$$LOD = K \times \delta/S = 2.1 \times 10^{-7} M$$

Fig. S3: The photograph of the fluorescent spectrum linear range.

6. The UV-vis spectroscopy and fluorescence spectroscopy for the stability and reproducibility of the sensor L2

Fig. S4: The UV–vis spectroscopy and fluorescence spectroscopy for the stability and reproducibility of the sensor **L2**.

7. IR spectra of sensor L2 and after adding fluoride anions

Fig. S5: IR spectra of sensor L2 and after adding fluoride anions in KBr disks.

8. IR spectra of L2–F and after adding zinc ions

Fig. S6: IR spectra of L2–F and after adding zinc ions in KBr disks.

9. The Job's plot examined between zinc ions and L2–F

Fig. S7: The Job's plot examined between zinc ions and L2–F, indicating the 1:1 stoichiometry for L2–F and zinc ion.

10. ESI/MS of L2

Fig. S8: The ESI/MS of L2 in DMSO.

11. ESI/MS of L2-F with zinc

Fig. S9: The ESI/MS of L2-F with zinc in DMSO.

12. ¹H–NMR spectrum of L2

Fig. S10: ¹H–NMR spectrum of L2 in DMSO– d_6 .

13. ¹³C–NMR spectrum of L2

Fig. S11: 13 C–NMR spectrum of L2 in DMSO– d_6 .