Electronic Supplementary Material (ESI) for RSC Advances. This journal is © The Royal Society of Chemistry 2016

Supporting Information

Light-Responsive Fluids Based on Reversible Wormlike Micelle to Rodlike Micelle Transitions

Zhiyu Xia, Kangle Jia, Xuefeng Li*, Jinfeng Dong*

College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, PR China.

*Corresponding author Email: lixuefeng@whu.edu.cn (Xuefeng Li), jfdong@whu.edu.cn (Jinfeng

Dong)

1. Synthetic route

4-decylazobenzene-4-(oxyethyl)-dihydroxyethylmethylammonium bromide ($C_{10}AZODEMAB$) was synthesized according to the similar procedure as reported previously ^[1], the detailed synthetic route was shown in **Scheme S1**.

Scheme S1. Synthetic route of C₁₀AZODEMAB

1.1 Characterization of C₁₀**AZODEMAB:** ¹H NMR (400 MHz, (CD₃)₂SO) δ (ppm): 0.85 (*t*, 3H, -**CH**₃),1.23~1.29 (*m*, 14H, CH₃-**CH**₂-**CH**₂-**CH**₂-**CH**₂-**CH**₂-**CH**₂-**CH**₂-), 1.61 (*m*, 2H, -**CH**₂-CH₂-Ar), 2.66 (*s*, 2H, -**CH**₂-Ar), 3,25 (*s*, 3H), 3.64 (*m*, 4H), 3.90 (*m*, 4H), 3.98 (*t*, 2H), 4.59 (*t*, 2H), 5.35 (*t*, 2H, -OH), 7.19, 7.21 (*d*, 2H, H-Ar), 7.38, 7.41 (*d*, 2H, H-Ar), 7.77, 7.80 (*d*, 2H, H-Ar), 7.91, 7.93 (*d*, 2H, **H**-Ar). ¹³C NMR (100 MHz, (CD₃)₂SO) δ (ppm): 14.7, 22.8, 29.3, 29.4, 29.5, 29. 7, 31.5, 32.0, 35.7, 50.4, 55.6, 62.0, 62.6, 64.8, 116.0, 123.0, 125.0, 129.9, 146.5, 147.3, 150.8, 160.6. ESI-MS; [M+H-Br⁻] C₂₉H₄₆N₃O₃⁺: Calcd: 484.4, Found: 484.3.

1.2 ¹H NMR spectrum of C₁₀AZODEMAB

1.3 ¹³C NMR spectrum of C₁₀AZODEMAB

1.4 ESI-MS spectrum of C₁₀AZODEMAB

2. Critical micelle concentration measurements

Figure S1. Concentration dependent conductance of $C_{10}AZODEMAB$ at 30 °C before (a) and after (b) UV light irradiation for 3 h.

3. Steady-shear rheological responses

Figure S2. [5 mS] dependent steady-shear rheological responses of 30 mmol·L⁻¹ C_{10} AZODEMAB before (a) and after (b) UV light irradiation for 3 h.

4. Irradiation time dependent zero-shear viscosity

Figure S3. Light irradiation time dependent zero-shear viscosity of 30 mmol·L⁻¹ C_{10} AZODEMAB/34 mmol·L⁻¹ 5 mS binary systems.

5. UV-Vis Spectra of 30 mmol·L⁻¹ C₁₀AZODEMAB/34 mmol·L⁻¹ 5 mS binary systems

Figure S4. Effects of irradiation conditions on UV-Vis spectra of 0.05 mmol·L⁻¹ $C_{10}AZODEMAB$ solutions. Samples were prepared by diluting the concentrated $C_{10}AZODEMAB/5$ mS binary mixtures (30 mmol·L⁻¹/34 mmol·L⁻¹) using ultrapure deionized water.

References:

[1] K. L. Jia, Y. M. Cheng, X. Liu, X. F. Li and J. F. Dong, RSC Adv., 2015, 5, 640-642.