Electronic Supplementary Information

Sulfonate anionic small molecules as cathode interfacial

materials for highly efficient polymer solar cells

Changjian Song,^{a,b} Xiaohui Liu,^b Xiaodong Li,^b Wenjun Zhang,^b* Yueling Bai,^a and Junfeng Fang^b*

^a Department of Chemistry, College of Science, Shanghai University, Shanghai 200444, China.

^b Ningbo Institute of Materials Technology and Engineering, Chinese Academy of

Sciences, Ningbo 315201, China.

E-mail: zhangwenjun@nimte.ac.cn and fangjf@nimte.ac.cn

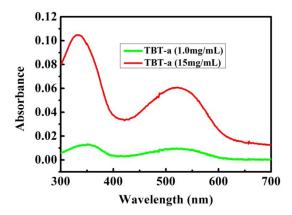


Fig. S1 The absorbance of different TBT-a films.

Interlayer	Abs _{max}	Relative thickness (nm)						
		1	2	3	4	5	6	Average
TBT-a (15mg/mL)	0.105	76.0	76.2	72.6	70.9	72.8	70.1	73.1
TBT-a (1.0mg/mL)	0.013	/	/	/	/	/	/	9.0

Table S1. The abs_{max} and relative thickness of different TBT-a films

The thickness of TBT-a film (15 mg/mL) was determined by the Veeco profiler (Dektak 150) for 73.1 nm, while the thickness of TBT-a film was estimated by an absorbance-thickness curve that assumed a linear dependence of the absorbance at 336 nm on thickness.¹ The result was shown in Table S1. When TBT-a concentration was 1.0 mg/mL, the thickness of TBT-a film was about 9 nm.

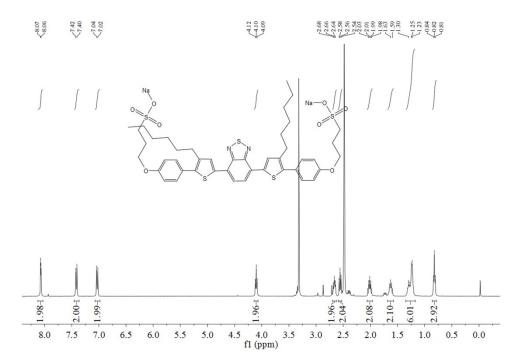
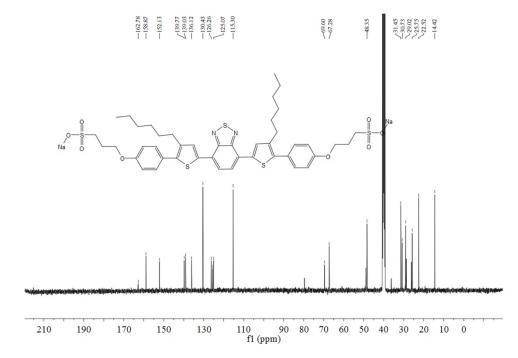
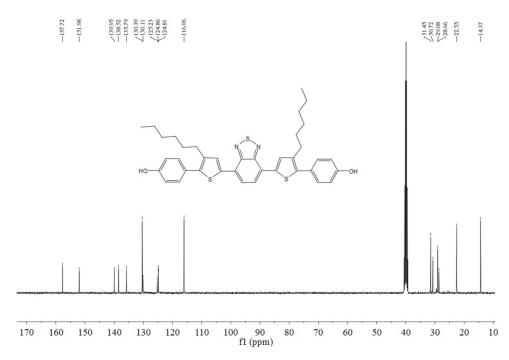
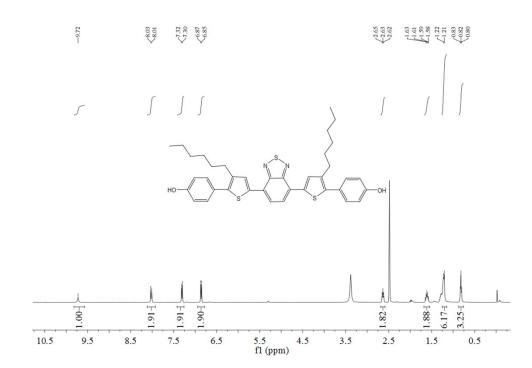


Fig.S2 ¹H NMR of TBT-a

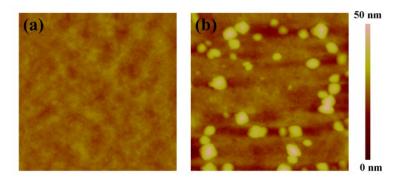

Fig.S3 ¹³C NMR of TBT-a

Fig. S6 Tapping-mode AFM images: the surface of the PTB7:PC71BM (a) treated by MeOH, RMS = 1.13 nm and (b) with TBT-a interlayer, RMS = 3.41 nm. (size: 2.5μ m× 2.5μ m)

Reference

 S. Liu, Zhang, K., Lu, J., Zhang, J., Yip, H. L., Huang, F. and Cao, Y., *J Am Chem* Soc, 2013, 135, 15326-15329.