Electronic Supplementary Information (ESI)

A new bisglycolamide substituted calix[4]arene-benzo-crown-6 for the selective removal of Cesium ion: Combined experimental and density functional theoretical investigation

Vikas Kumar^{a*}, J. N. Sharma^b, P.V.Achuthan^c, D.K. Singh^a, Sk. Musharaf Ali^{d*}

^a Materials Group, Bhabha Atomic Research Centre, Trombay,

^b Nuclear Recycle Group, Bhabha Atomic Research Centre, Trombay,

^c NRB, Trombay, Mumbai, INDIA

^d Chemical Engineering Division, Bhabha Atomic Research Centre, Trombay,

*musharaf@barc.gov.in; vikasgulia20@gmail.com

Figure S1: ¹H NMR of 1,3-dipropenyloxy calix-benzo-crown (4):

Figure S2: ¹³C NMR of 1,3-dipropenyloxy calix-benzo-crown (4):

Spectrum Plot - 1/3/2014 3:23 PM

Figure S6: ESI-MS spectra of 1,3-dipropyloxy calix[4]arene-benzocrown diol(5):

Spectrum Plot - 1/3/2014 3:39 PM

Figure S9: ESI-MS spectra of 1,3- alternate Calix[4]arene-benzocrown-bisglycolamide (6)

Spectrum Plot - 1/6/2014 11:41 AM

Table S1: Computed values of electron density and Laplacian of electron density and ellipsity of MNO₃-CBCBGA and metal ion-hydrated complexes at the B3LYP/DZP level using Bader's AIM calculation.

Metal-ion	BCP	ρ	Ave. ∇2ρ	Ave. ε
complex				
Cs+-CBCBGA	Cs-01	0.0105	0.039	0.069
	Cs -O2	0.0056		
	Cs -O3	0.0076		
	Cs -04	0.0103		
	Cs -05	0.0104		
	Cs -06	0.0078		
	Cs -07	0.0111		
	Cs -08	0.0130		
Na ⁺ -CBCBGA	Na-O1	0.0105	0.079	0.062
	Na -O2	0.0041		
	Na -O3	0.0091		
	Na -04	0.0134		
	Na -05	0.0276		
Cs ⁺ -(H ₂ O) ₈	Cs-01	0.0082	0.031	0.078
	Cs -O2	0.0084		
	Cs -O3	0.0080		
	Cs -04	0.0084		
	Cs -05	0.0080		
	Cs -06	0.0081		
	Cs -07	0.0076		
	Cs -08	0.0086		
Na ⁺ -(H ₂ O) ₆	Na-O1	0.015	0.096	0.055
	Na -O2	0.015		
	Na -O3	0.015		
	Na -04	0.015		
	Na -05	0.015		
	Na -06	0.015		

Table S2: Calculated values of average second order stabilization energies $E_{ij}^{(2)}$ using NBO analysis at the B3LYP/DZP level of theory.

Donar nbo (i)	Accepter nbo (j)	E(2) (kcal/mol)
LP(1)O1	LV(1)Cs179	0.68
LP(1)O3	LV(1)Cs179	2.02
LP(2)O3	LV(1)Cs179	0.32
LP(1)05	LV(1)Cs179	1.02
LP(2)O5	LV(1)Cs179	0.10
LP(1)O6	LV(1)Cs179	2.81
LP(2)O6	LV(1)Cs179	0.22
LP(1)07	LV(1)Cs179	0.91
LP(2)07	LV(1)Cs179	0.48
LP(1)08	LV(1)Cs179	0.94
LP(2)08	LV(1)Cs179	0.07
LP(1)O13	LV(1)Cs179	1.82
LP(1)O14	LV(1)Cs179	6.49
LP(2)O14	LV(1)Cs179	0.36
LP(3)O14	LV(1)Cs179	0.30
LP(1)O15	LV(1)Cs179	6.03
LP(2)O15	LV(1)Cs179	0.47
LP(3)O15	LV(1)Cs179	0.56
Donar nbo (i)	Accepter nbo (j)	E(2) (kcal/mol)
LP(1)O69	LV(1)Na87	1.00
LP(2)O69	LV(1)Na87	0.14
LP(1)O70	LV(1)Na87	2.27
LP(1)071	LV(1)Na87	0.67
LP(2)071	LV(1)Na87	0.23
LP(1)074	LV(1)Na87	1.42
LP(2)074	LV(1)Na87	0.07
LP(1)O75	LV(1)Na87	2.00
LP(1)O76	LV(1)Na87	0.84
LP(1)O81	LV(1)Na87	3 91

LP(2)O81	LV(1)Na87	0.12
LP(1)082	LV(1)Na87	2.93
LP(2)082	LV(1)Na87	0.09
LP(1)O83	LV(1)Na87	1.67