Supporting Information. Figure S1: full porosimetry isotherms of all ferrites. Figure S2: Copper Ferrite Annealed at 350°C. Figure S3: Copper Ferrite Annealed at 700°C for 6 hours and ImageJ[®] analysis results. Figure S4: Thermal gravimetric analysis of the ferrites in each series. Table S1: Porosimetry result the copper ferrite annealed at 700 °C.

Figure S1: Porosimetry Isotherms

Figure S1-A: As prepared cobalt ferrite aerogel porosimetry isotherm

Figure S1-B: As prepared nickel ferrite aerogel porosimetry isotherm

Figure S1-C: As prepared copper ferrite aerogel porosimetry isotherm

Figure S1-D: As prepared zinc ferrite aerogel porosimetry isotherm

Table S1: Porosimetry	v result the	conner ferrite	annealed at 700 °C
	y i court the	copper rennice	

Aerogel	BET S.A. (m²/g)	Pore volume (cm ³ /g)	Pore radius (nm)
Fe₂CuO₄	15	0.02	1.8

Figure S2: Copper Ferrite Annealed at 350°C

Figure S2: After annealing at 350°C, copper ferrite aerogels do not show significant copper ferrite reflections and are essentially amorphous. Crystalline peaks match to CuO and $Cu_2Cl(OH)_3$: starting materials.

Figure S3: Copper Ferrite Annealed at 700°C for 6 hours

Figure S3: After annealing at 700°C, copper ferrite particles grow (Ostwald ripening) to an average of 70 nm on a bimodal distribution with modes at 50 and 170 nm.

Figure S4: Thermal gravimetric analysis of the ferrites

Figure S4: Thermal gravimetric analysis of each of the ferrites in the series. A: $CoFe_2O_4$; B: $NiFe_2O_4$; C: $CuFe_2O_4$; D: $ZnFe_2O_4$.