1	Electronic Supplementary information (ESI) for				
2					
3	Lithiation induced crystal restructure of hydrothermal				
4	prepared Sn/TiO ₂ nanocrystallite with substantial enhanced				
5	the capacity and cycling performance for lithium-ion battery				
6					
7	Tsan-Yao Chen ^{a,b*} ,Yu-Ting Liu ^c ,Ping-Ching Wu ^d ,Chih-Wei Hu ^a ,Po-Wei Yang ^a ,				
8	Liang-Ching Hsu ^c , Chih-Hao Lee ^a , and Chia-Chin Chang ^{d^*}				
9					
10	Affiliations:				
11	^a Department of Engineering and System Science, National Tsing Hua University,				
12	Hsinchu 30013, Taiwan				
13	^b Institute of Nuclear Engineering and Science, National Tsing Hua University,				
14	Hsinchu 30013, Taiwan				
15	^c Department of Soil and Environmental Science, National Chung Hsing University,				
16	Taichung 402, Taiwan				
17	^d Department of Greenergy Technology, National University of Tainan, Tainan 7005,				
18	Taiwan				
19	*To whom correspondence should be addressed:				
20	Chia-Chin Chang, email: ccchang@mail.nutn.edu.tw ; Tel: +886-6-268-9274 (O);				
21	+886-6-260-2205 (Fax)				
22					

23 1. Microstructure of Sn doped TiO_2 (2ST) and TiO_2

24 The lattice slices for 2 x 2 slabs of (101) facet of TiO₂-A and (110) facet of TiO₂-25 R are shown in Fig. S1. As shown in Fig. S1a, the topmost layer of TiO₂-A (101) 26 facet comprising all Ti atoms with the symmetry of P2. The interatomic distances between center and Ti atoms at two edge axis are determined to be 5.730 and 5.376 Å 27 with the interatomic cross angle of 69.703° / 110.297°, respectively. On the other hand, 28 the topmost layer of TiO₂ (110) facet comprising Ti and O atoms in the symmetry of 29 Cmm2. In this slice, the interatomic distances between Ti and O atoms are determined 30 to be 1.936 / 1.960 Å with the cross angle of 80.913° / 99.087°. 31 32

34 Fig. S1. The lattice slices for (a) (101) facet of TiO_2 -A and (b) (110) facet of TiO_2 -R. 35

The microstructure of the experimental negative electrodes were illustrated by scanning electron microscopy and transmission electron microscopy. As can be seen, there are segregated nanoparticles (in an average size of 3 - 4 nm) segregating at the surface of rectangular crystallites (in a size ranging from 100 to 120 nm). Such results consistently prove the finding of XRD indicating that the surface segregation of SnO₂ at SnTiO₂. The results of EDX are given in **Table S1**.

43

44 Fig. S2 The scanning electron microscopy images of TiO_2 and 2ST electrode (with

45 the binder of PAA) before (blank) and after (formation) LIB formation.

- 46
- 47

Table S1. The EDX results of 2ST sample

element	atomic ratio (%)
Ti	82.4
Sn	17.6

48

51 Fig. S3 Atomic structure model for the (a) (101) facet of TiO₂-A and (b) (110) facet
52 of TiO₂-R.

53 The atomic structure model for the (101) facet of TiO_2 -A and (110) facet of 54 TiO₂-R are shown in Fig. S3a and S3b, respectively. Accordingly, there are three coordination shells including 1st CN for Ti-O1XY / TiO1XY" / TiO1Z with the 55 distance of 1.874 / 1.874 / 1.923 Å; 2nd CN for Ti-Ti2 with the distance of 3.730 Å; 56 3^{rd} CN for Ti-O3 with the distance of 4.174 Å. The cross angles between $O1_{XY}$ -Ti-57 O1_{XY}", O1_{XY}-Ti-O1_Z, and O1_Z-Ti-O1_Z" are determined to be 75.899, 93.403, and 58 104.101°, respectively. For the case of TiO_2 -R (110), the local structure in the first 59 four CN shell are Ti-O1_{XY}/Ti-O1_Z", Ti-Ti2, Ti-O3, Ti-Ti3, and Ti-O4, respectively. 60 In this facet, the cross angles of O1_{XY}-Ti-O1_{XY}', O1_{XY}'-Ti-O1_{XY}", and O1_Z-Ti-O1_Z" 61 are determined to be 80.91, 99.09, and 1800, respectively. These structure information 62

- 63 consistently proved the contribution of radial structure peaks in the Ti K-edge EXAFS
- 64 spectra of experimental samples Fig. 3.

66 Fig. S4. The crystal structure with interatomic bond length at the first three 67 coordination shells (Ti/Sn-O1, Ti/Sn-O2, Ti/Sn-Ti3) of $Sn_{0.1}Ti_{0.9}O_2$

69 2. Cyclic voltammetry analysis on the negative electrodes of TiO₂ and 2ST in LIB
70 cell

71 The Cyclic voltammetry sweeping curves of 2ST and TiO₂ powder mixed with 5 wt% of conducting carbon (SBR) and binder (PAA) in negative electrode at the 1st 72 and 2nd CV sweeping curve are shown in Fig. S5a and S5b, respectively, with the 73 voltage scan ranging from 0 to 3.0 volts. In S3a, as clearly shown, there are several 74 75 reaction peaks at the 2.0 to 0.8 volts on the 1st CV sweeping curve of TiO₂. These peaks can be attributed to the formation of surface chelation reaction between the 76 ligands of binder (PAA) and the OH- sites at different sorption sites of the TiO₂ 77 surface. For the case of 2ST, the reaction peaks across 1.8 - 0.8 volts shall correspond 78 to the contributions of surface binder chelation as that were found on TiO₂. Here, a 79 substantial enhanced peak is found at 1.3 - 0.8 volts and can be attributed to the 80 formation of Li₂O by interacting the Li ions with the SnO₂ (SnO₂ + 4Li⁺ + 4e⁻ \rightarrow 81 $2Li_2O + Sn$) with the subsequent formation of SnLix (Sn + xLi⁺ + xe⁻ \rightarrow Li_xSn, 0 \leq 82 $x \leq 4.4$) at the low voltage range (0.4 - 0.0 volts). These features reveals the 83 presence of LixSn local alloying and the presence of surface SnO2 residuals on the 84 85 freshly prepared 2ST powders. In Fig. S5b, the absence of surface chelation and SnO₂ reduction peaks indicate that the completeness of SnO2 reduction and formation of 86 $Li_x Sn$ in the 1st CV cycle. 87

89 Fig. S5. The cyclic voltammetry sweeping curves of 2ST and TiO_2 negative electrode

90 mixing with 5 wt% of conducting carbon (SP) and binder (PAA) at (a) 1st and (b) 2nd
91 CV cycles.

94 3. XRD analysis for X-ray window of coin cell "Kapton (polyimide)"95

97 Fig. S6a XRD patterns of Kapton and Kapton coated with TiO₂ thin film; (b) inset of
98 Fig. S6a (ref: https://wiki-ext.aps.anl.gov/ug11bm/index.php/Supplies_and_Tools)
99

The XRD pattern of Kapton was compared with that of Kapton coated with TiO_2 thin film in Fig. S6a and S6b. The peaks A and B denote the diffraction lines of kapton film at d spaces of 15.78 and 6.93 Å, respectively. The peaks C and D denote the diffraction lines of (101) and (110) facets for TiO₂-A and TiO₂-R, respectively. In the spectrum of Kapton + TiO₂ (Fig. S6b), the background was lifted by the diffusion scattering from the binder and conducting carbon additives in the TiO₂ thin film. 106 Accordingly, no diffraction peaks appear from 9 to 12° on spectrum of Kapton thin 107 film. It means that, the spectrum features of the negative electrode material in in-situ 108 experiments were not affected by the diffraction or scattering signals from the Kapton 109 window.

110

- 111
- 112 4. Electrochemical performance of experimental LIB

113

Fig. S7 Charge / Discharge (lithiation / delithiation) curves of LIB coin cell with TiO_2 and 2ST negative electrode during *in-situ* XRD analysis. The current density is set to be 0.03 mA mg⁻¹ with the charge/discharge potential from 0.1 to 3.0 V. The experimental coin cells were assembled and aged for 3 days prior to the in-situ XRD measurements.

119

Fig. S7 shows the charge / discharge (Li insertion / extraction) characteristic curve (C-E curve) of LIB with TiO₂ and 2ST negative electrode in formation cycle. The six regions A, B, C, D, E and F (with different Capacity to Voltage slopes) can be assigned to the features of Li⁺ insertion at different chemical (potential) stages of TiO₂ in LIB. In region A (from 3.0 to 1.75 volt), the voltage drop can be attributed to the formation of Li insertion site at TiO₂-R surface. By applying voltage higher than 1.75 volt, a plateau from 10 to 110 mAhg⁻¹ (region B) is the typical feature for the Li⁺ 127 intercalation to ion channel of TiO₂-R. By increasing capacity from 120 to 210 mAhg-¹, the slides in regions C (1.75 - 1.52 volt), D (1.52 - 1.41 volt), and E (1.41 - 1.10 volt) 128 were caused by the intercalation of Li⁺ into the vacancy sites of distorted TiO₂-A at 129 the core-shell interface, the formation of Li⁺ insertion site at TiO₂-A surface, and the 130 extrusion of Li⁺ to the TiO₂-A core crystallite. By increasing capacity higher than 210 131 132 mAhg⁻¹ (region F), the dramatic voltage drop reveals the suppression of further Li insertion by the closed pore diffusion barrier at TiO₂-A core. In this case, the 133 formation of Li⁺ pillows consumes certain cell potential and thus results in the 134 gradient distribution in the region F. Upon discharging, the C-E curve shows the 135 typical profile with a gradient of Li⁺ diffusion; where a large irreversibility of 136 capacity is found between charge (300 mAhg⁻¹) and discharge (200 mAhg⁻¹) state. 137 Only one discharge plateau is found from 180 to 60 mAhg⁻¹ at 1.9 volt. By decreasing 138 the capacity less than 60 mAhg⁻¹, potential is dropped from 1.9 to 0.1 volt by 139 completely discharging the LIB. These are typical characters for C-E curves of TiO₂-140 A and TiO₂-R as negative electrode in LIB. After the1st charge-discharge cycle, the 141 142 ion channels were aligned by the lattice relaxation at the core - shell interface, therefore, resulting in the indistinct stage profile in the regions C to E of TiO₂ (Fig. S8) 143 in the 2nd and 3rd charge curves. These features prove the formation of pillow 144 (formation of Li_xTiO₂) at Li channels which play important role in the irreversibility 145 of TiO₂ as consistently proved by the *in-situ* XRD analysis (Fig. 4b). 146

For 2ST negative electrode in LIB, the cell voltage was dropped from 3.0 to 1.45 volte upon increasing the capacity to 35 mAhg⁻¹ (denoted by arrow X). This voltage drop is larger than that of TiO₂ negative electrode and can be attributed to the formation of Li₂O and Sn metal (by SnO₂ + 4Li⁺ + 4e⁻ \rightarrow 2Li₂O + Sn reaction at 1.5 to 0.8 V as shown in the CV curve of 2ST Fig. S5) by interactions between SnO₂ and Li⁺. By further charging the LIB to 360 mAhg⁻¹, a slight voltage drop (1.45 to 0.95 153 volt) was found between arrow X and arrow Y. According to in-situ XRD results (Fig. 154 4a), we notice the absence of diffraction lines from 2ST-P in the presence of TiO_2 -R (110) (peak G) and TiO₂-A (101) facets (peak E) simultaneously with the Li 155 intercalated TiO₂-R (110) (peak G_L) and TiO₂-A (101) facets (peak E_L) in *in-situ* 156 XRD patterns (Fig. 4) by increasing SOC larger than 5 till 85% (~450 mAhg⁻¹). The 157 progressive potential drop (from 0.85 to 0.71 volt) is caused by the phase transition 158 159 from $Sn_{0.1}Ti_{0.9}O_2$ to TiO_2 -R and TiO_2 -A by the lattice relaxation and Li^+ intercalation. Further increasing the capacity till 495 mAhg⁻¹ causing a dramatic voltage drop to 0.1 160 volt. This phenomenon can be assigned to the formation of local SnLi_x alloy (as 161 consistently revealed by CV analysis in Fig. S5) thus resulting in its superior capacity 162 163 comparing to TiO₂. The irreversibility of 2ST was determined to be 80% (390 mAhg⁻¹, 490 \rightarrow 100 mAhg⁻¹) which is 2.9-fold higher than that of TiO₂ (33.8%, 295 \rightarrow 195 164 mAhg⁻¹). Such abnormal property seemly hindered the application of 2ST in LIB, 165 however, can be substantially improved by mixing proper amount of conducting 166 carbon (SP, 20 wt% relative to active materials in our cases). According to the C-E 167 168 curves of LIB with SP mixed negative electrodes, the irreversibility of TiO₂ (Fig. S8a) and 2ST (Fig. S8b) negative electrodes at the charge and discharge states at the first 169 three CE cycles were reduced to 28/5/5% and 27/6/6%, respectively. It means that the 170 171 Li extraction of 2ST is efficiently facilitated by placing the conductive particles in 172 active material.

Fig. S8 Charge / Discharge (lithiation / delithiation) curves of LIB coin cell with TiO₂
and 2ST negative electrode during *in-situ* XRD analysis. The negative electrode was
prepared by mixing the experimental powders with the conductive carbon. The
current density is set to be 0.03 mA mg⁻¹ with the charge/discharge potential from 0.1
to 3.0 V.

181 5. Electrochemical impednace analysis of half cells containing experimental

negative electrodes

Fig. S9. The proposed electrical equivalent circuit for modeling the EIS spectra ofexperimental LIB.

Table S2. The model simulated electrochemical impedance parameters of half LIB
cell with (a) TiO₂ (TiO₂) and (b) Sn_{0.1}Ti_{0.9}O₂ (2ST-P) negative electrode materials.
The caption ended by -3D and -3DF denote the EIS spectra of negative electrode

sample	Rs (W)	R _{SEI} (W)	$R_{CT}(W)$
TiO ₂ -3D	8.61	120	700
TiO ₂ -3DF	8.12	74.73	194.7
2ST-P-3D	10.82	59	97.6
2ST-P-3DF	5	15	73

191 before and after 1st charge / discharge cycle of LIB, respectively.

194 6. XPS analysis

195 The XPS spectra of of Sn-TiO₂ samples (immersed in electrolyte for 1 hour (ST-1H), 3 days (ST-3DAY), and after LIB formation (ST-Formation)) at C 1s, O 1s, Sn 196 3d, and Ti $2p_{3/2}$ orbitals were compared in Fig. S10. It clearly shown that the four 197 elements (including Sn) were prevailing at particle surface in the sample immersed for 198 199 1 hour. As consistently revealed by result of EDX analysis, the XPS spectra proved 200 the presence of Sn composition in the experimental sample. Increasing the immersion time or formation of LIB reduced the intensity of emission lines for metal elements 201 202 with the substantially enhanced C1s and O1s peaks. These phenomenon reveals the 203 formation of solid state interface atop the active materials. 204

205

206 Fig. S10. The XPS spectra of Sn-TiO₂ samples at C 1s, O 1s, Sn 3d, and Ti $2p_{3/2}$

207 orbitals.

Fig. S11 The XPS depth profile of (a) freshly prepared 2ST-P electrode and (b) thatwith 250 Charge – Discharge cycles.

The depth profile of freshly prepared 2ST-P electrode and that with 250 Charge - Discharge cycles were demonstrated in Fig. S11. The obtained results indicating the presence of Sn at (Fig. 3a) 2ST-P and formation of SEI (as proved by high composition of C at the sample surface. The concentration of Sn was determined to be 4 to 5 at% by increasing the sputter time from 0 to 6 hours at the sputtering rate of 3

218 nm per hour vs. Si wafer.