Electronic Supplementary Information

Tunneling Effect in Vitamin E Recycling by Green Tea

Shin-ichi Nagaoka,* Akiko Nitta, Ai Suemitsu and Kazuo Mukai

Department of Chemistry, Faculty of Science and Graduate School of Science and Engineering, Ehime University, Matsuyama 790-8577, Japan

> *Corresponding author: Shin-ichi Nagaoka e-mail: nagaoka@ehime-u.ac.jp Phone: 81-89-927-9592 Fax: 81-89-927-9590

Table S1 $k_r^{H}, k_r^{D}, k_s^{H}, k_s^{D}, 2k_d^{H}$ and $2k_d^{D}$ values for reactions (1)–(3) in EtOH/H₂O and EtOD/D₂O at 15–37 °C.

Fig. S1 Rise-and-decay curves of $[\alpha$ -Toc•] during reaction (2-H) and the subsequent reaction (3-H) in EtOH/H₂O at 15–37 °C, and the curves simulated according to eqns (9)–(16).

Fig. S2 Rise-and-decay curves of $[\alpha$ -Toc•] during reaction (2-D) and the subsequent reaction (3-D) in EtOD/D₂O at 15–37 °C, and the curves simulated according to those similar to eqns (9)–(16).

Fig. S3 Arrhenius plots of k_s^{H} and k_s^{D} values for reactions (2-H) and (2-D) in EtOH/H₂O and EtOD/D₂O, respectively.

Fig. S4 Decay curves of α -Toc• absorbance at 429 nm during reaction (3-D) and the competitive reaction (1-D) between α -Toc• and EGC-D in EtOD/D₂O at 25 °C.

Fig. S5 Decay curves of α -Toc• absorbance at 429 nm during reaction (3-H) and the competitive reaction (1-H) between α -Toc• and EC-H in EtOH/H₂O at 25 °C.

Fig. S6 Decay curves of α -Toc• absorbance at 429 nm during reaction (3-D) and the competitive reaction (1-D) between α -Toc• and EC-D in EtOD/D₂O at 25 °C.

Fig. S7 Decay curves of α -Toc• absorbance at 429 nm during reaction (3-H) and the competitive reaction (1-H) between α -Toc• and ECG-H in EtOH/H₂O at 25 °C.

Fig. S8 Decay curves of α -Toc• absorbance at 429 nm during reaction (3-H) and the competitive reaction (1-H) between α -Toc• and EGCG-H in EtOH/H₂O at 25 °C.

Fig. S9 Decay curves of α -Toc• absorbance at 429 nm during reaction (3-D) and the competitive reaction (1-D) between α -Toc• and EGCG-D in EtOD/D₂O at 25 °C.

Fig. S10 Decay curves of α -Toc• absorbance at 429 nm during reaction (3-H) and the competitive reaction (1-H) between α -Toc• and MR in EtOH/H₂O at 25 °C.

Fig. S11 Decay curves of α -Toc• absorbance at 429 nm during reaction (3-H) and the competitive reaction (1-H) between α -Toc• and MC in EtOH/H₂O at 25 °C.

Fig. S12 Decay curves of α -Toc• absorbance at 429 nm during reaction (3-H) and the competitive reaction (1-H) between α -Toc• and MG in EtOH/H₂O at 25 °C.

Fig. S13 Arrhenius plot of k_r^{H} values for reaction (1-H) between α -Toc• and EC-H in EtOH/H₂O.

Fig. S14 Arrhenius plot of k_r^H values for reaction (1-H) between α -Toc• and ECG-H in EtOH/H₂O.

Fig. S15 Arrhenius plot of k_r^{H} values for reaction (1-H) between α -Toc• and EGCG-H in EtOH/H₂O.

Fig. S16 Arrhenius plot of k_r^D values for reaction (1-D) between α -Toc• and EGCG-D in EtOD/D₂O.

Fig. S17 Arrhenius plot of k_r^{H} values for reaction (1-H) between α -Toc• and MC in EtOH/H₂O.

Fig. S18 Arrhenius plot of k_r^H values for reaction (1-H) between α -Toc• and MG in EtOH/H₂O.

Molecule			Reaction rate constant / M-1s-1			
		15	20	25	30	37 / °C
EC-H	$k_{ m r}^{ m H}$	7.90×10^{2}	9.63×10 ²	1.20×10^{3}	1.46×10 ³	1.78×10^{3}
EC-D	$k_{\rm r}^{\rm D}$	_a	_a	2.56×10^{2}	3.28×10 ²	_ <i>a</i>
ECG-H	$k_{ m r}^{ m H}$	2.38×10^{3}	2.84×10^{3}	3.43×10 ³	4.18×10 ³	5.22×10^{3}
ECG-D	$k_{\rm r}^{\rm D}$	_a	_a	_a	_ <i>a</i>	_ <i>a</i>
EGC-H	$k_{ m r}^{ m H}$	2.00×10^{4}	2.24×10^{4}	2.41×10^{4}	2.71×10^{4}	2.98×10^{4}
EGC-D	$k_{\rm r}^{\rm D}$	_a	2.23×10^{3}	2.49×10 ³	3.00×10 ³	3.74×10^{3}
EGCG-H	$k_{ m r}^{ m H}$	1.82×10^{4}	2.02×10^{4}	2.31×10^{4}	2.50×10^{4}	2.83×10^{4}
EGCG-D	$k_{\rm r}^{\rm D}$	_a	_a	4.49×10 ³	5.30×10 ³	6.89×10 ³
MR	$k_{ m r}^{ m H}$	< 10 ²	< 10 ²	< 10 ²	< 10 ²	< 10 ²
MC	$k_{ m r}^{ m H}$	3.30×10 ³	3.96×10 ³	4.48×10 ³	5.38×10 ³	6.32×10 ³
MP	$k_{ m r}^{ m H}$	1.38×10 ⁵	1.61×10 ⁵	1.75×10 ⁵	1.87×10^{5}	1.88×10 ⁵
MG	$k_{ m r}^{ m H}$	1.47×10^{3}	1.78×10^{3}	2.11×10 ³	2.46×10 ³	3.06×10 ³
α-TocH	$k_{\rm s}{}^{\rm H}$	6.80×10 ³	7.50×10 ³	8.20×10 ³	9.00×10 ³	1.00×10^{4}
α-TocD	$k_{\rm s}{}^{\rm D}$	2.70×10^{2}	3.20×10 ²	4.00×10^{2}	4.55×10 ²	5.45×10 ²
α-Toc•	$2k_{\rm d}{}^{\rm H}$	1.08×10^{3}	1.13×10 ³	1.21×10 ³	1.25×10 ³	1.40×10 ³
α-Toc•	$2k_{\rm d}^{\rm D}$	8.80×10 ²	8.90×10 ²	9.50×10 ²	1.01×10 ³	1.15×10 ³

Table S1 k_r^{H} , k_r^{D} , k_s^{H} , k_s^{D} , $2k_d^{H}$ and $2k_d^{D}$ values for reactions (1)–(3) in EtOH/H₂O and EtOD/D₂O at 15–37 °C

^{*a*} Reliable data was not obtained.

Fig. S1 Rise-and-decay curves of $[\alpha$ -Toc•] during reaction (2-H) and the subsequent reaction (3-H) in EtOH/H₂O at 15–37 °C (red curves), and the curves simulated according to eqns (9)–(16) (black curves). In the simulation, k_s^H and $2k_d^H$ are set to the values given in Table S1, and $[ArO•]_0$ are set to 7.50×10⁻², 7.60×10⁻², 7.85×10⁻², 8.15×10⁻² and 8.46×10⁻² mM at 15, 20, 25, 30 and 37 °C, respectively. $[\alpha$ -TocH]_0 = 6.33 mM and ε = 3420 M⁻¹cm⁻¹.

Fig. S2 Rise-and-decay curves of $[\alpha$ -Toc•] during reaction (2-D) and the subsequent reaction (3-D) in EtOD/D₂O at 15–37 °C (red curves), and the curves simulated according to those similar to eqns (9)–(16) (blue curves). In the simulation, k_s^D and $2k_d^D$ are set to the values given in Table S1, and $[ArO•]_0$ are set to 0.255, 0.240, 0.230, 0.218 and 0.215 mM at 15, 20, 25, 30 and 37 °C, respectively. $[\alpha$ -TocD]_0 = 2.12 mM and ε = 3420 M⁻¹cm⁻¹.

Fig. S3 Arrhenius plots of k_s^H and k_s^D values for reactions (2-H) and (2-D) in EtOH/H₂O and EtOD/D₂O (open and filled circles, respectively). The solid lines show the best-fitting lines by standard linear least-squares analyses.

Fig. S4 Decay curves of α -Toc• absorbance at 429 nm during reaction (3-D) and the competitive reaction (1-D) between α -Toc• and EGC-D in EtOD/D₂O at 25 °C. The prepared [EGC-D] for the data shown with red, blue, green and black curves were 3.96×10^{-5} , 7.92×10^{-5} , 1.19×10^{-4} and 1.58×10^{-4} M, respectively.

Fig. S5 Decay curves of α -Toc• absorbance at 429 nm during reaction (3-H) and the competitive reaction (1-H) between α -Toc• and EC-H in EtOH/H₂O at 25 °C. The prepared [EC-H] for the data shown with black, dark-grey, red and light-gray curves were 3.57×10^{-4} , 7.14×10^{-4} , 1.07×10^{-3} and 1.43×10^{-3} M, respectively.

Fig. S6 Decay curves of α -Toc• absorbance at 429 nm during reaction (3-D) and the competitive reaction (1-D) between α -Toc• and EC-D in EtOD/D₂O at 25 °C. The prepared [EC-D] for the data shown with red, blue, green and black curves were 3.44×10^{-4} , 6.88×10^{-4} , 1.03×10^{-3} and 1.38×10^{-3} M, respectively.

Fig. S7 Decay curves of α -Toc• absorbance at 429 nm during reaction (3-H) and the competitive reaction (1-H) between α -Toc• and ECG-H in EtOH/H₂O at 25 °C. The prepared [ECG-H] for the data shown with black, dark-grey, red and light-gray curves were 3.84×10^{-5} , 7.69×10^{-5} , 1.15×10^{-4} and 1.53×10^{-4} M, respectively.

Fig. S8 Decay curves of α -Toc• absorbance at 429 nm during reaction (3-H) and the competitive reaction (1-H) between α -Toc• and EGCG-H in EtOH/H₂O at 25 °C. The prepared [EGCG-H] for the data shown with black, dark-grey, red and light-gray curves were 1.79×10^{-5} , 3.58×10^{-5} , 5.38×10^{-5} and 7.17×10^{-5} M, respectively.

Fig. S9 Decay curves of α -Toc• absorbance at 429 nm during reaction (3-D) and the competitive reaction (1-D) between α -Toc• and EGCG-D in EtOD/D₂O at 25 °C. The prepared [EGCG-D] for the data shown with red, blue, green and black curves were 3.20×10^{-5} , 6.39×10^{-5} , 9.56×10^{-5} and 1.28×10^{-4} M, respectively.

Fig. S10 Decay curves of α -Toc• absorbance at 429 nm during reaction (3-H) and the competitive reaction (1-H) between α -Toc• and MR in EtOH/H₂O at 25 °C. The prepared [MR] for the data shown with black, dark-grey, red and light-gray curves were 9.18×10^{-4} , 1.84×10^{-3} , 2.75×10^{-3} and 3.67×10^{-3} M, respectively.

Fig. S11 Decay curves of α -Toc• absorbance at 429 nm during reaction (3-H) and the competitive reaction (1-H) between α -Toc• and MC in EtOH/H₂O at 25 °C. The prepared [MC] for the data shown with black, dark-grey, red and light-gray curves were 1.07×10^{-3} , 2.14×10^{-3} , 3.20×10^{-3} and 4.27×10^{-3} M, respectively.

Fig. S12 Decay curves of α -Toc• absorbance at 429 nm during reaction (3-H) and the competitive reaction (1-H) with MG in EtOH/H₂O at 25 °C. The prepared [MG] for the data shown with black, dark-grey, red and light-gray curves were 6.44×10^{-4} , 1.29×10^{-3} , 1.93×10^{-3} and 2.58×10^{-3} M, respectively.

Fig. S13 Arrhenius plot of k_r^H values for reaction (1-H) between α -Toc• and EC-H in EtOH/H₂O. The solid line shows the best-fitting line by a standard linear least-squares analysis.

Fig. S14 Arrhenius plot of k_r^H values for reaction (1-H) between α -Toc• and ECG-H in EtOH/H₂O. The solid line shows the best-fitting line by a standard linear least-squares analysis.

Fig. S15 Arrhenius plot of k_r^H values for reaction (1-H) between α -Toc• and EGCG-H in EtOH/H₂O. The solid line shows the best-fitting line by a standard linear least-squares analysis.

Fig. S16 Arrhenius plot of k_r^D values for reaction (1-D) between α -Toc• and EGCG-D in EtOD/D₂O. The solid line shows the best-fitting line by a standard linear least-squares analysis.

Fig. S17 Arrhenius plot of k_r^H values for reaction (1-H) with MC in EtOH/H₂O. The solid line shows the best-fitting line by a standard linear least-squares analysis.

Fig. S18 Arrhenius plot of k_r^H values for reaction (1-H) with MG in EtOH/H₂O. The solid line shows the best-fitting line by a standard linear least-squares analysis.

