An Efficient Route to Asymmetrically Diconjugated tris(heteroleptic) Complexes of Ru(II)

Christopher S. Burke^a and Tia E. Keyes^a

^{a.} School of Chemical Sciences, Dublin City University, Dublin 9, Co. Dublin, Ireland.

Supplementary Information

Structural characterisation of the Ru(II) complexes and conjugates [Ru(dppz)(DMSO)₂Cl₂] (1)

Figure S1 – ¹H NMR Spectrum (400 MHz) of (1) in $CDCI_3$.

Figure S2 – 13 C NMR Spectrum of (1) in CDCl₃.

Figure S3 – HR-MS (ESI-QTOF): Single Mass Analysis of (1) indicating [M]⁺.

[Ru(dppz)(bpy)(ox)] (2)

Figure S4 – ¹H NMR Spectrum (400 MHz) of (2) in DMSO-d₆.

Single Mass Analysis Tolerance = 5.0 PPM / DBE: min = -1.5, max = 1000.0 Isotope cluster parameters: Separation = 1.0 Abundance = 1.0%

Monoisotopic Mass, Odd and Even Electron Ions 106 formula(e) evaluated with 1 results within limits (all results (up to 1000) for each mass)

Figure S5 – HR-MS (ESI-QTOF): Single Mass Analysis of (2) indicating [M + Na]⁺.

[Ru(dppz)(bpyArCOOH)(ox)] (3)

Figure S6 – ¹H NMR Spectrum (400 MHz) of (3) in DMSO-d₆.

[Ru(dppz)(bpy)(bpyArCOOEt)](PF₆)₂(4)

Figure S7 – ¹H NMR Spectrum (600 MHz) of (4) in CD_3CN .

Figure S8 – 13 C NMR Spectrum of (4) in CD₃CN.

Figure S9 – COSY Spectrum (600 MHz) of (4) in CD_3CN .

Single Mass Analysis

Tolerance = 5.0 PPM / DBE: min = -1.5, max = 1000.0 Isotope cluster parameters: Separation = 1.0 Abundance = 1.0%

Monoisotopic Mass, Odd and Even Electron Ions 392 formula(e) evaluated with 1 results within limits (all results (up to 1000) for each mass)

DCU_TK_CBTH 1: TOF MS ES+	CU_TK_CBTK-020 24 (0.769) AM (Cen,4, 80.00, Ar,1.0,556.28,0.70,LS 1); Sm (Mn, 2x5.00); Sb (16,15.00); TOF MS ES+ 989.1477							24:28) 2.384				
%- 977.1430	981.2666 983.1974	985.2363 986	2103 988.157	75 990.1142.99	91.0907 993.014	3 95 994.9333 996.1	B307	000.2712	1004	1.2279 		
977.5	980.0 982.5	985.0	987.5	990.0	992.5 9	995.0 997	.5	1000.0	1002.5	1005.0		
Minimum: Maximum:		200.0	5.0	-1.5 1000.0								
Mass	Calc. Mass	mDa	PPM	DBE	Score	Formula						
989.1477	989.1490	-1.3	-1.3	32.5	1	C47 H34	N8 0	2 Ru	F6 P			

[Ru(dppz)(bpy)(bpyArCOOH)](PF₆)₂(5)

9.0 8.5 8.0 7.5 7.0 6.5 6.0 10.5 10.0 9.5 5.5 5.0 4.5 4.0 3.5 3.0 2.5 2.0 ppm

Figure S12 – 13 C NMR Spectrum of (5) in CD₃CN.

Figure S13 – COSY NMR Spectrum of (5) in CD₃CN (aromatic region).

Figure S14 – HRMS (ESI-QTOF): Mass spectrum of (5) indicating $[M - PF_6^-]^+$.

[Ru(dppz)(bpyArCOOH)(bpyArCOOEt)](PF₆)₂(6)

Figure S15 – ¹H NMR Spectrum (600 MHz) of **(6)** in CD_3CN . Peaks at 1.1 and 3.4 are assigned to residual diethyl ether.

Figure S16 – 13 C NMR Spectrum of (6) in CD₃CN.

Figure S17 – COSY NMR Spectrum (600 MHz) of (6) in CD₃CN (aromatic region).

Single Mass Analysis Tolerance = 6.0 PPM / DBE: min = -1.5, max = 1000.0

Isotope cluster parameters: Separation = 1.0 Abundance = 1.0%

Monoisotopic Mass, Odd and Even Electron Ions 459 formula(e) evaluated with 1 results within limits (all results (up to 1000) for each mass)

Figure S18 – HR-MS (ESI-QTOF): Single Mass Analysis of (6) indicating $[M - PF_6^{-}]^+$.

[Ru(dppz)(bpy-PEG)(bpyArCOOEt)](PF₆)₂(7)

Figure S19 – ¹H NMR Spectrum (600 MHz) of (7) in acetone- d_6 . The peaks at 2.09 and 3.10 are assigned to residual acetone and water respectively.

Single Mas Tolerance = Element pre Number of is	ss Analysis 100.0 PPM / I diction: Off sotope peaks use	DBE: min = - ed for i-FIT =	1.5, max 3	= 500.0						
Monoisotopic 5250 formula(Elements Use C: 0-85 H: 0	Mass, Odd and Ev e) evaluated with f ed: 0-101 N: 0-9 O:	en Electron Ic I results withir 0-18 F: 0-6	ons h limits (al P: 0-1	l results (up to Ru: 0-1	1000) for ea	ach mass)				
Christopher Burke (TK), CBTK-032 Q-TOF20160108MF001 103 (2.067) AM (Cen,4, 80.00, Ar,10000.0,1570.68,0.70); Sm (SG, 1x5.00); Sb (15,10.00); Cm (46:125) 1792 6024										
100 % 725.13	20 893.0242	1115.176	1	1352.5146	1571 1552.6731	1.6749 1780.6050 1655.6840	785.6101	2032.7	7800_20	79.8171 m/z
700 8	00 900 10	00 1100	1200	1300 1400	1500	1600 1700 180	0 1900	2000	2100	2200
Minimum: Maximum:		5.0	100.0	-1.5 500.0						
Mass	Calc. Mass	mDa	PPM	DBE	i-FIT	i-FIT (Norm)	Formula			
1782.6034	1782.5950	8.4	4.7	37.5	105.1	0.0	C85 H101 Ru	N9	018	F6 P

Figure S20 – HR-MS (MALDI-QTOF): Single Mass Analysis of (7) indicating $[M - PF_6^-]^+$.

[Ru(dppz)(bpyArCONH-PEG₁₅-OMe)(bpyArCOOH)](PF₆)₂ (8)

Figure S21 – ¹H NMR Spectrum (600 MHz) of **(8)** in acetone-d₆. The peaks at 5.63, 2.84 and 1.79 are assigned to dichloromethane, water and THF residual solvents from reaction work-up.

Single Mas Tolerance = Element pre Number of is	ss Analysis 100.0 PPM / ediction: Off sotope peaks us	DBE: min = - ed for i-FIT =	1.5, ma 3	x = 500.0					
Monoisotopic 5250 formula Elements Use C: 0-83 H: 0	Mass, Odd and E (e) evaluated with ed: D-97 N: 0-9 O:	iven Electron I 1 results within 0-18 F: 0-6	ons n limits (a P: 0-1	all results (up to Ru: 0-1	1000) for e	each mass)			
Christopher Bu Q-TOF201601	irke (TK), CBTK-033 08MF002 95 (1.925)) AM (Cen,4, 80.	00, Ar,100	00.0,1570.68,0.70	i); Sm (SG,	1x5.00); Sb (15,10.00); C 1754.5691	:m (27:122-(9	95:97+119))	TOF MS LD+ 2.96e+004
0-700.0920 0-700.0920 0-700 8) 893.0206 	1087.1450 000 1100	1200	1352.5134 1300 1400	157 1500	71.6749 1752.5725 175 1600 1700 180	7.5756 00 1900	2004.7212	2083.9185
Minimum: Maximum:		5.0	100.0	-1.5 500.0					
Mass	Calc. Mass	mDa	PPM	DBE	i-FIT	i-FIT (Norm)	Formula		
1754.5691	1754.5637	5.4	3.1	37.5	122.0	0.0	C83 H97 Ru	N9 01	8 F6 P

Figure S22 – HR-MS (MALDI-QTOF): Single Mass Analysis of (8) indicating $[M - PF_6^-]^+$.

[Ru(dppz)(bpy-PEG)(bpy-NFkB)](PF₆)₆(9)

Figure S23 – ¹H NMR Spectrum (600 MHz) of (9) in methanol- d_4 . The peaks at 4.79 and 2.15 ppm are due to residual water and acetone solvent from reaction work-up.

Figure S24 – COSY NMR Spectrum of (9) in methanol-d₄.

Figure S25 – HR-MS (MALDI-QTOF): Mass spectrum of (9).

Figure S26 – Spectral overlay of the mass spectra of (8) and (9).

HPLC Analysis of the Conjugates

Figure S27 – HPLC trace (RP-C18, MeCN/Water (0.1 % TFA) Gradient; PDAD) for **(6)**. Indicative Purity (vs Ru(II) precursors; 450 nm) = 100 %.

Figure S28 – HPLC trace (RP-C18, MeCN/Water (0.1 % TFA) Gradient; PDAD) for (7). Indicative Purity (vs Ru(II) precursors; 450 nm) = 99.2 %.

Figure S29 – HPLC trace (RP-C18, MeCN/Water (0.1 % TFA) Gradient; PDAD) for **(8)**. Indicative Purity (vs Ru(II) precursors; 450 nm) = 99.7 %.

Figure S30 – HPLC trace (RP-C18, MeCN/Water (0.1 % TFA) Gradient; PDAD) for **(9)**. Early eluting peaks are due to sample solvent.

Additional Photophysical Data

General Information

For compounds (4) – (6), solutions were prepared in MeCN using the PF_{6} salt of the complex whereas the Cl salt was preferred for the aqueous samples. Samples (7) and (9) were prepared from their PF_{6} salts and required *ca*. 0.5 % v/v DMSO as an initial solubilising agent. All scans and lifetime measurements were performed using 10 μ M solutions. The extinction coefficients were calculated from standard curves (5 – 30 μ M). Standard deviations are calculated from triplicate analyses. All lifetime curve fitting conformed to chi-squared tail-fit criteria of 0.9 < χ^2 < 1.10. Slit widths set to 5 nm for emission and excitation runs. Deaeration was performed by bubbling N₂ through the analytical sample for 15 mins minutes.

Charts

Figure S31 – Absorbance (full lines) and emission (dashed lines) spectra in water for the complexes (4) - (9).