Supplementary Information:

Factors Affecting Oxygen Evolution through Water Oxidation on Polycrystalline Titanium Dioxide

Yuuya Nishimoto^a, Yuichi Hasegawa^b, Kenta Adachi^a and Suzuko Yamazaki^{a*}

^a Division of Environmental Science and Engineering, Graduate School of Science and

Engineering, Yamaguchi University, Yamaguchi 753-8512, Japan

^b Department of Biology and Chemistry, Faculty of Science, Yamaguchi University,

Yamaguchi 753-8512, Japan

Fig. S1 Emission spectrum of super-high-pressure Hg lamp through a U330 bandpass filter.

Fig. S2 Pore size distributions of (a) TiO_2 -D and (b) TiO_2 -ND calcined at 200–600°C for 2 hours.

Fig. S3 Zeta potential of TiO_2 nanocolloid as a function of pH value.

Fig. S4 XRD patterns of TiO₂-D calcined at (a) 200–500°C and (b) 600–900°C for 2 hours.

Fig. S5 XRD patterns of TiO₂-ND calcined at (a) 200–500°C and (b) 600–900°C for 2 hours.

Fig. S6 TG and DTA curves for (a) TiO₂-D and (b) TiO₂-ND calcined at 200°C for 2 hours.

Fig. S7 Time courses of O_2 evolution from 0.001–0.01 mol L⁻¹ AgNO₃ solution on TiO₂-ND calcined at 800°C for 2 hours under UV light irradiation.

Fig. S8 Crystalline phase composition of (a) TiO₂-D and (b) TiO₂-ND calcined 200–900°C for 10 hours. (Red: anatase, green: brookite, blue: rutile.)

Fig. S9 Relationships between D_{av} and O_2 evolution rate on TiO₂-D and TiO₂-ND calcined at 200–900°C for 2 or 10 hours.