Investigation on Tungsten-Promoted Titania as Solid Acid for Catalytic Hydrolysis of Waste Bottle PET in Supercritical CO₂

Wen-Ze Guo, Hui Lu, Xue-Kun Li, and Gui-Ping Cao*

UNILAB, State Key Lab of Chemical Engineering, School of Chemical Engineering

East China University of Science and Technology, Shanghai 200237, China

Supplementary Information

1.H₂-TPR characterization of the fresh, used and reactivated 0.30 W-Ti solid catalysts.

Figure S1.The H₂-TPR profiles of the fresh, used and reactivated 0.30 W-Ti solid catalysts.

2.NH₃-TPD characterization of the fresh, used and reactivated 0.30 W-Ti solid catalysts.

Figure S2.The NH₃-TPD profiles of the fresh, used and reactivated 0.30 W-Ti solid catalysts.

3.SEM characterization of partly-hydrolyzed PET treated without catalysts

Figure S3. The morphology of the partly-hydrolyzed PET (*D*=0.0632 g/g) treated at 160 °C and 15 MPa for 6 h without catalysts. (A) surface; (B) cross section

Figure S4.The XRD patterns of (A) residual PET hydrolyzed over 0.30 W-Ti catalysts in SC CO₂ at 160 °C and 15 MPa for 9 h, (B) residual PET swelled by SC CO₂ at 160 °C and 15 MPa for 9 h without catalysts, (C) original PET, (D) TPA product.