Electronic Supplementary Material (ESI) for RSC Advances. This journal is © The Royal Society of Chemistry 2016

Supporting Information

Lanthanide metal–organic frameworks based on a 1,2,3-triazole-containing tricarboxylic acid ligand for luminescence sensing of metal ions and nitroaromatic compounds

Di Wang, Libo Sun, Chuanqing Hao, Yan Yan and Zhiqiang Liang*

State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun 130012, P. R. China

> *E-mail: liangzq@jlu.edu.cn Fax:* +86-431-85168609

Fig. S1 Representation of the asymmetric unit of 1 (a), 2 (b) and 3 (c) showing ellipsoid at the 50% probability level.

Fig. S2 Powder X-ray diffraction patterns of compounds 1–3 and micrometer-sized 1'–3'.

Fig. S3 Infra-red spectra of M3, ligand and compounds 1–3.

Fig. S4 TGA curves of compounds 1–3.

Fig. S5 SEM image of micrometer 1'.

Fig. S6 Luminescent spectra of H₃TAIP in the solid state (a, $\lambda_{ex} = 340$ nm). Excitation and emission spectra of **1**' (b, $\lambda_{ex} = 305$ nm), **2**' (c, $\lambda_{ex} = 321$ nm) and **3**' (d, $\lambda_{ex} = 297$ nm) in ethanol suspensions (Inset: photographs of micrometer-sized **1**', **2**' and **3**' under UV-light of 254 nm.).

Fig. S7 Comparison of emission intensities for micrometer-sized 1', 2' and 3' in ethanol suspensions (0.25 mg/mL).

Fig. S8 The photographs of micrometer-sized 1' before (a) and after (b) adding Fe^{3+} under the UV-light of 254 nm.

Fig. S9 Fluorescent titrations of 0.5 mg **1'** dispersed in 2 mL ethanol solution with the addition of different volume of 0.001 M solution of a) Fe^{3+} , b) Fe^{2+} , c) Cr^{3+} , d) Cu^{2+} e) Ba^{2+} , f) In^{3+} , g) Li^+ , h) Pb^{2+} , i) Co^{2+} , j) Zn^{2+} , k) Ni^{2+} , l) Cd^{2+} ,m) Mg^{2+} and n) Sr^{2+} in ethanol. The fluorescent emission spectra were recorded from 350 nm to 640 nm upon the excitation at 305 nm. The slit width for excitation and emission is 1.5 nm and 3.0 nm, respectively.

Fig. S10 Fluorescent titrations of 0.5 mg **1**' dispersed in 2 mL ethanol solution with the addition of different volume of 0.001 M solution of a) 4-nitrophenol (4-NP), b) 2, 4-dinitrophenol (2,4-DNP), c) Picric acid (PA), d) 4-chloronitrobenzene (4-Cl-NB) e) 4-nitrotoluene (4-NT), f) 2,4,6-trinitrotoluene (TNT), g) 2,4-dinitrotoluene (2,4-DNT), and h) 4-nitrobenzaldehyde (4-NBA) in ethanol. The fluorescent emission spectra were recorded from 350 nm to 640 nm upon the excitation at 305 nm. The slit width for excitation and emission is 1.5 nm and 3.0 nm, respectively.

Fig. S11 Powder X-ray diffraction patterns of simulated and micrometer-size phase 1' after test.

Fig. S12 UV-Vis adsorption spectrum of $M(NO_3)_X$ aqueous solution and the excitation spectrum of micrometer-size phase 1'.

Fig. S13 The 1 H and 13 C NMR spectra of M3

Fig. S14 The 1 H and 13 C NMR spectra of H₃TAIP.

Empirical formula	$C_{23}H_{22}N_5O_8Tb$	
Formula weight	655.20	
Temperature	296(2) K	
Wavelength	0.71073 Å	
Crystal system, space group	Monoclinic, $C2/c$	
	$a = 31.6491(17) \text{ Å} \qquad \alpha = 90^{\circ}$	
Unit cell dimensions	$b = 14.9143(9) \text{ Å} \qquad \beta = 96.4660(10)^{\circ}$	
	$c = 13.2656(7) \text{ Å} \qquad \gamma = 90^{\circ}$	
Volume	6221.9(6) Å ³	
Z	8	
Absorption coefficient	2.317 mm ⁻¹	
F (000)	2416	
Theta range for data collection	1.51 to 28.30°	
Limiting indices	-38≤h≤42, -19≤k≤18, -16≤l≤17	
Reflections collected / unique	22674 / 7738	
R int	0.0624	
Completeness to theta =28.30	99.8%	
Absorption correction	Semi-empirical from equivalents	
Max. and min. Transmission	0.6805 and 0.6296	
Refinement method	Full-matrix least-squares on F^2	
Data / restraints / parameters	7738 / 214 / 256	
Goodness-of-fit on F^2	1.066	
Final R indices $[\triangleright 2 \sigma(\hbar)]^{b}$	$R_1 = 0.0664, wR_2 = 0.1969$	
R indices (all data)	$R_1 = 0.0997, wR_2 = 0.2234$	
Largest diff. peak and hole	3.327 and -1.540 e.Å ⁻³	

Table S1 Crystal Data and Structure Refinement for 1.^a

Tuble 52. Dona lenguis [11] una angles [deg] for 1.				
Bond lengths		Bond lengths		
Tb(1)-O(7)#1	2.340(4)	Tb(1)-O(6)#2	2.362(4)	
Tb(1)-O(3)#3	2.363(4)	Tb(1)-O(5)	2.379(8)	
Tb(1)-O(2)	2.406(5)	Tb(1)-O(4)	2.410(7)	
Tb(1)-O(8)#4	2.421(4)	Tb(1)-O(1)	2.481(5)	
Tb(1)-O(7)#4	2.767(4)	O(7)-Tb(1)#6	2.767(4)	
O(3)-Tb(1)#3	2.363(4)	O(8)-Tb(1)#6	2.421(4)	
O(6)-Tb(1)#5	2.362(4)	O(7)-Tb(1)#1	2.340(4)	

Table S2. Bond lengths [Å] and angles [deg] for 1.

Bond angels		Bond angels	
O(7)#1-Tb(1)-O(6)#2	79.92(13)	O(7)#1-Tb(1)-O(3)#3	74.34(13)
O(6)#2-Tb(1)-O(3)#3	131.35(12)	O(7)#1-Tb(1)-O(5)	79.9(3)
O(6)#2-Tb(1)-O(5)	74.7(3)	O(3)#3-Tb(1)-O(5)	137.4(3)
O(7)#1-Tb(1)-O(2)	81.59(14)	O(6)#2-Tb(1)-O(2)	143.75(15)
O(3)#3-Tb(1)-O(2)	71.48(15)	O(5)-Tb(1)-O(2)	71.6(3)
O(7)#1-Tb(1)-O(4)	146.9(2)	O(6)#2-Tb(1)-O(4)	74.5(2)
O(3)#3-Tb(1)-O(4)	138.7(2)	O(5)-Tb(1)-O(4)	73.4(4)
O(2)-Tb(1)-O(4)	107.4(2)	O(7)#1-Tb(1)-O(8)#4	123.73(12)
O(6)#2-Tb(1)-O(8)#4	85.81(13)	O(3)#3-Tb(1)-O(8)#4	75.71(13)
O(5)-Tb(1)-O(8)#4	146.4(3)	O(2)-Tb(1)-O(8)#4	130.22(15)
O(4)-Tb(1)-O(8)#4	75.3(2)	O(7)#1-Tb(1)-O(1)	131.28(14)
O(6)#2-Tb(1)-O(1)	146.13(14)	O(3)#3-Tb(1)-O(1)	77.30(14)
O(5)-Tb(1)-O(1)	95.9(3)	O(2)-Tb(1)-O(1)	51.92(15)
O(4)-Tb(1)-O(1)	71.7(3)	O(8)#4-Tb(1)-O(1)	85.23(14)
O(7)#1-Tb(1)-O(7)#4	75.39(13)	O(6)#2-Tb(1)-O(7)#4	66.25(12)
O(3)#3-Tb(1)-O(7)#4	67.64(12)	O(5)-Tb(1)-O(7)#4	136.5(3)
O(2)-Tb(1)-O(7)#4	137.06(14)	O(4)-Tb(1)-O(7)#4	111.7(2)
O(8)#4-Tb(1)-O(7)#4	49.29(11)	O(1)-Tb(1)-O(7)#4	127.19(14)

Empirical formula	$C_{49}H_{51}La_2N_{11}O_{17}$	
Formula weight	1343.42	
Temperature	296(2) K	
Wavelength	0.71073 Å	
Crystal system, space group	Monoclinic, C2/c	
	$a = 32.118(3) \text{ Å} \qquad \alpha = 90^{\circ}$	
Unit cell dimensions	$b = 15.2133(17) \text{ Å} \qquad \beta = 95.256(2)^{\circ}$	
	$c = 13.1789(14) \text{ Å} \qquad \gamma = 90^{\circ}$	
Volume	6412.4(12) Å ³	
Z	4	
Absorption coefficient	1.381 mm ⁻¹	
F (000)	2484	
Theta range for data collection	1.48 to 28.34°	
Limiting indices	-42≤h≤36, -18≤k≤20, -13≤l≤17	
Reflections collected / unique	23110 / 7987	
R int	0.0628	
Completeness to theta =28.34	99.8%	
Absorption correction	Semi-empirical from equivalents	
Max. and min. Transmission	0.7892 and 0.7603	
Refinement method	Full-matrix least-squares on F^2	
Data / restraints / parameters	7987 / 268 / 412	
Goodness-of-fit on F^2	1.007	
Final R indices $[\not > 2 \sigma (h)]^{b}$	$R_1 = 0.0582, wR_2 = 0.1634$	
R indices (all data)	$R_1 = 0.0947, wR_2 = 0.1886$	
Largest diff. peak and hole	1.739 and -1.781 e.Å ⁻³	

 Table S3. Crystal Data and Structure Refinement for 2.^a

Bond lengths		Bond lengths	
La(1)-O(3)#1	2.482(4)	La(1)-O(6)#2	2.491(5)
La(1)-O(5)#3	2.497(4)	La(1)-O(7)	2.517(6)
La(1)-O(8)	2.524(7)	La(1)-O(1)	2.534(5)
La(1)-O(4)#4	2.538(5)	La(1)-O(2)	2.593(5)
La(1)-O(3)#4	2.831(4)	O(3)-La(1)#1	2.482(4)
O(3)-La(1)#6	2.831(4)	O(4)-La(1)#6	2.538(5)
O(5)-La(1)#3	2.497(4)	O(6)-La(1)#7	2.491(5)

Table S4. Bond lengths [Å] and angles [deg] for 2.

Bond angels		Bond angels	
O(3)#1-La(1)-O(6)#2	78.56(16)	O(3)#1-La(1)-O(5)#3	73.68(16)
O(6)#2-La(1)-O(5)#3	130.35(16)	O(3)#1-La(1)-O(7)	148.1(2)
O(6)#2-La(1)-O(7)	75.20(19)	O(5)#3-La(1)-O(7)	137.9(2)
O(3)#1-La(1)-O(8)	80.4(2)	O(6)#2-La(1)-O(8)	72.6(2)
O(5)#3-La(1)-O(8)	138.8(2)	O(7)-La(1)-O(8)	74.7(3)
O(3)#1-La(1)-O(1)	78.73(16)	O(6)#2-La(1)-O(1)	141.37(18)
O(5)#3-La(1)-O(1)	70.81(17)	O(7)-La(1)-O(1)	111.9(2)
O(8)-La(1)-O(1)	73.1(2)	O(3)#1-La(1)-O(4)#4	122.45(14)
O(6)#2-La(1)-O(4)#4	87.71(18)	O(5)#3-La(1)-O(4)#4	74.24(16)
O(7)-La(1)-O(4)#4	74.4(2)	O(8)-La(1)-O(4)#4	146.7(2)
O(1)-La(1)-O(4)#4	130.91(17)	O(3)#1-La(1)-O(2)	129.21(15)
O(6)#2-La(1)-O(2)	146.15(18)	O(5)#3-La(1)-O(2)	81.07(19)
O(7)-La(1)-O(2)	71.8(2)	O(8)-La(1)-O(2)	91.6(2)
O(1)-La(1)-O(2)	51.27(16)	O(4)#4-La(1)-O(2)	90.41(17)
O(3)#1-La(1)-O(3)#4	76.02(14)	O(6)#2-La(1)-O(3)#4	66.14(15)
O(5)#3-La(1)-O(3)#4	67.65(14)	O(7)-La(1)-O(3)#4	108.69(19)
O(8)-La(1)-O(3)#4	135.5(2)	O(1)-La(1)-O(3)#4	135.86(17)
O(4)#4-La(1)-O(3)#4	47.79(13)	O(2)-La(1)-O(3)#4	132.33(18)

Empirical formula	C ₂₃ H ₂₂ Eu N ₅ O ₈₇	
Formula weight	648.24	
Temperature	293(2) K	
Wavelength	0.71073 Å	
Crystal system, space group	Monoclinic, $C2/c$	
	$a = 31.810(6) \text{ Å} \qquad \alpha = 90^{\circ}$	
Unit cell dimensions	$b = 14.993(3) \text{ Å} \qquad \beta = 96.01(3)^{\circ}$	
	$c = 13.220(3) \text{ Å} \qquad \gamma = 90^{\circ}$	
Volume	6271(2) Å ³	
Z	8	
Absorption coefficient	2.044 mm ⁻¹	
F (000)	2400	
Theta range for data collection	3.01 to 27.48°	
Limiting indices	-41≤h≤41, -19≤k≤18, -15≤l≤17	
Reflections collected / unique	29600 / 7152	
R int	0.0828	
Completeness to theta =27.48	99.4 %	
Absorption correction	Semi-empirical from equivalents	
Max. and min. Transmission	0.6974 and 0.6507	
Refinement method	Full-matrix least-squares on F^2	
Data / restraints / parameters	7152 / 224 / 289	
Goodness-of-fit on F^2	1.092	
Final R indices $[\not > 2 \sigma (h)]^{b}$	$R_1 = 0.0596, wR_2 = 0.1638$	
R indices (all data)	$R_1 = 0.0842, wR_2 = 0.1852$	
Largest diff. peak and hole	1.875 and -1.245 e.Å ⁻³	

 Table S5. Bond lengths [Å] and angles [deg] for 3.^a

Table 50. Dolla lei	iguis [A] and angles [e	icg] 101 J.	
Bond lengths		Bond lengths	
Eu(1)-O(1)#3	2.379(2)	Eu(1)-O(6)	2.397(3)
Eu(1)-O(5)	2.406(3)	Eu(1)-O(7)	2.422(3)
Eu(1)-O(8)	2.429(4)	Eu(1)-O(2)	2.437(3)
Eu(1)-O(4)	2.443(3)	Eu(1)-O(3)	2.514(3)
Eu(1)-O(1)	2.774(3)	O(1)-Eu(1)#3	2.379(2)

Table S6. Bond lengths [Å] and angles [deg] for 3.

Bond angels		Bond angels		
O(6)-Eu(1)-O(5)	131.49(9)	O(1)#3-Eu(1)-O(7)	146.04(12)	
O(6)-Eu(1)-O(7)	73.94(12)	O(5)-Eu(1)-O(7)	139.24(12)	
O(1)#3-Eu(1)-O(8)	78.93(14)	O(6)-Eu(1)-O(8)	72.52(13)	
O(5)-Eu(1)-O(8)	138.53(14)	O(7)-Eu(1)-O(8)	72.92(16)	
O(1)#3-Eu(1)-O(2)	124.19(9)	O(6)-Eu(1)-O(2)	86.25(10)	
O(5)-Eu(1)-O(2)	75.47(9)	O(7)-Eu(1)-O(2)	75.60(12)	
O(8)-Eu(1)-O(2)	145.78(14)	O(1)#3-Eu(1)-O(4)	80.50(10)	
O(6)-Eu(1)-O(4)	142.75(11)	O(5)-Eu(1)-O(4)	71.69(10)	
O(7)-Eu(1)-O(4)	108.16(12)	O(8)-Eu(1)-O(4)	72.84(14)	
O(2)-Eu(1)-O(4)	130.84(11)	O(1)#3-Eu(1)-O(3)	130.82(9)	
O(6)-Eu(1)-O(3)	146.05(10)	O(5)-Eu(1)-O(3)	77.75(11)	
O(7)-Eu(1)-O(3)	72.11(12)	O(8)-Eu(1)-O(3)	96.83(14)	
O(2)-Eu(1)-O(3)	85.89(10)	O(4)-Eu(1)-O(3)	52.26(10)	
O(1)#3-Eu(1)-O(1)	75.99(9)	O(6)-Eu(1)-O(1)	66.10(9)	
O(5)-Eu(1)-O(1)	68.01(9)	O(7)-Eu(1)-O(1)	111.28(10)	
O(8)-Eu(1)-O(1)	134.48(13)	O(2)-Eu(1)-O(1)	49.25(8)	
O(4)-Eu(1)-O(1)	137.32(9)	O(3)-Eu(1)-O(1)	128.21(10)	
O(1)#3-Eu(1)-O(5)	74.70(9)			

^aDate based on *PLATON/SQUEEZE* mode.

^b $R_1 = \sum ||F_o| - |F_c|| / \sum |F_o|$. $wR_2 = [\sum [w (F_o^2 - F_c^2)^2] / \sum [w (F_o^2)^2]]^{1/2}$.