Supporting Information

Core/shell Ag@silicate nanoplatelets and poly(vinyl alcohol)

spherical nanohybrids fabricated by coaxial electrospraying as

highly sensitive SERS substrates

Chih-Wei Chiu* and Po-Hsien Lin

Department of Materials Science and Engineering, National Taiwan University of Science and Technology, Taipei 10607, Taiwan

*Corresponding author:

Tel: +886-2-2737-6521; Fax: +886-2-2737-6544; E-mail: cwchiu@mail.ntust.edu.tw

Contents:

SCHEME CAPTION

Scheme S1. Synthesis of copolymer as organic dispersant.

FIGURE CAPTIONS

Fig. S1 FT-IR spectra of PIB-amidoacid-POE-amidoacid-PIB intermediate and PIB-imide-POE-imide-PIB tri-block copolymer (copolymer).

Fig. S2 UV-Vis absorption spectra of the colloidal AgNPs in AgNO₃/copolymer/silicate reductions with a weight ratio of 1:1:0. Inset: 0.005 wt% yellow-gold solution confirming AgNP formation following treatment at 80 °C for 9 h.

Fig. S3 UV-Vis absorption spectra of the colloidal AgNPs in AgNO₃/copolymer/silicate reductions with a weight ratio of 1:1:1. Inset: 0.005 wt% yellow-gold solution confirming AgNP formation following treatment at 80 °C for 10 h.

Fig. S4 UV-Vis absorption spectra of the colloidal AgNPs in AgNO₃/copolymer/silicate reductions with a weight ratio of 10:10:1. Inset: 0.005 wt% yellow-gold solution confirming AgNP formation following treatment at 80 °C for 8 h.

Fig. S5 UV-Vis absorption spectra of the colloidal AgNPs in AgNO₃/copolymer/silicate reductions with a weight ratio of 20:20:1. Inset: 0.005 wt% yellow-gold solution confirming AgNP formation following treatment at 80 °C for 8 h.

TABLE LIST

Table S1. Solubility of PIB-SA, POE-2000, and tri-block copolymer in water and organic solvents.

VIDEO LIST

Video S1. A movie demonstrating the Taylor cone from hybrid liquid droplets in the electrospray process is provided. The liquid body of the inner needle PVA solution and the outer needle Ag@silicate

hybrids shows a conical shape, referred to as the Taylor cone, at 25 KV threshold voltage, with a half angle of 49.8°.

Scheme S1. Synthesis of copolymer as organic dispersant.

Fig. S1 FT-IR spectra of PIB-amidoacid-POE-amidoacid-PIB intermediate and PIB-imide-POE-imide-PIB tri-block copolymer (copolymer).

Fig. S2 UV-vis absorption spectra of the colloidal AgNPs in AgNO₃/copolymer/silicate reductions with a weight ratio of 1:1:0. Inset: 0.005 wt% yellow-gold solution confirming AgNP formation following treatment at 80 °C for 9 h.

Fig. S3 UV-vis absorption spectra of the colloidal AgNPs in AgNO₃/copolymer/silicate reductions with a weight ratio of 1:1:1. Inset: 0.005 wt% yellow-gold solution confirming AgNP formation following treatment at 80 °C for 10 h.

Fig. S4 UV-vis absorption spectra of the colloidal AgNPs in AgNO₃/copolymer/silicate reductions with a weight ratio of 10:10:1. Inset: 0.005 wt% yellow-gold solution confirming AgNP formation following treatment at 80 °C for 8 h.

Fig. S5 UV-vis absorption spectra of the colloidal AgNPs in AgNO₃/copolymer/silicate reductions with a weight ratio of 20:20:1. Inset: 0.005 wt% yellow-gold solution confirming AgNP formation following treatment at 80 °C for 8 h.

Sample	H ₂ O	Ethanol	Toluene	Decane
PIB-SA	-	-	+	+
POE-2000	+	+	+-	-
Tri-block copolymer	+	+	+	+

Table S1. Solubility of PIB-SA, POE-2000, and tri-block copolymer in water and organic solvents.

+: soluble; +-: soluble, but sediments form after 2 h settling; -: insoluble.