Electronic Supplementary Information for

Astridia velutina-like S, N-codoped hierarchical porous carbon from silk cocoon

for superior oxygen reduction reaction

Yixuan Wang,^a Yongpeng Lei*a, b, c and Huaping Wang^a

^aKey Laboratory of High Performance Fibers & Products, Ministry of Education,

Donghua University, Shanghai, P. R. China 201620

^bCollege of Basic Education, National University of Defense Technology, Changsha,

Hunan, P. R. China, 410073

^cKey Laboratory of Lightweight and Reliability Technology for Engineering Vehicle,

College of Hunan Province, Changsha, Hunan, P. R. China, 410114

Corresponding author: Tel/fax: +86 731 84575118. E-mail: lypkd@163.com &

leiyongpeng@nudt.edu.cn (Y. Lei).

Supplemental Figures and Tables

Figure S1. CV curves of SNC-800 and Pt/C electrode in N₂-saturated (black line) or

O₂-saturated (red line) 0.1 M KOH.

Figure S2. LSV curves of Pt/C electrode at different rotating speed in an O_2 -saturated 0.1 M KOH.

Figure S3 Tafel plots of SNC-800 derived from the corresponding LSV curves

Table S1. Comparison of ORR activity of different non-metal catalysts in 0.1 mol L⁻¹ KOH electrolyte.

As known, different electrochemical measurement methods have different influences on onset and half-wave potential of electrocatalysts. Therefore, we chose ΔE_{onset} and $\Delta E_{1/2}$ to determine the eletrocatalytic performance. We defined $\Delta E_{onset} = E_{onset}$ (Pt/C) $-E_{onset}$ (Sample) and $\Delta E_{1/2} = E_{1/2}$ (Pt/C) $-E_{1/2}$ (Sample).

Catalyst	Loading (mg cm ⁻²)	ΔE _{onset} (mV)	ΔE _{1/2} (mV)	Reference
NG-SCC _f	0.24	124	101	This work
G-CBP-a		160	90	J. Mater. Chem. A 2014, 2, 7742.
NCNC700/ 900	0.10	100	—	Adv. Mater. 2012, 24, 5593.
NGSH	0.25	80	~60	Small 2014, 10, 2251.
NG-900	0.14	70		Phys. Chem. Chem. Phys. 2012, 14, 3381.
CNF@NG	0.45	100	~70	Angew. Chem. Int. Ed. 2014, 53, 6905.
PCN-CFP	~0.20	50	130	Angew. Chem. Int. Ed. 2014, 53, 1.
N-MLG-45	—	60	~75	Carbon 2014, 76, 1.
GD ₅ -900	_	~90	~90	Nanoscale 2015, 7, 12598.