Supporting Information

Uncatalyzed Reactions of 4,4`-Diphenylmethane-Diisocyanate with Polymer Polyols as Revealed by Matrix-Assisted Laser Desorption/Ionization Mass Spectrometry

Tibor Nagy¹, Borbála Antal¹, Anita Dékány-Adamoczky¹, József Karger-Kocsis² Miklós Zsuga¹, Sándor Kéki^{1*}

¹ Department of Applied Chemistry, University of Debrecen, Egyetem tér1, H-4032 Debrecen, Hungary

² Department of Polymer Engineering, Budapest University of Technology and Economics, Műegyetem rkp. 3, H-1111 Budapest, Hungary

Corresponding author's e-mail: keki.sandor@science.unideb.hu

I. Estimation of the relative MALDI-TOF MS response factors

The intensities of the reference were compared to those of the different series, and the corresponding relative response factors were estimated by means of eq. S1.

$$I_{ref} = p_1 I_A + p_2 I_B + p_3 I_C + p_4 I_D$$
(S1)

where $p_1 = qf_{ref}/f_A$, $p_2 = qf_{ref}/f_B$, $p_3 = qf_{ref}/f_C$ and $p_4 = qf_{ref}/f_D$, q is the concentration ratio of the reference and the starting polymer triol (PPG_GL), I_{ref} , I_A , I_B , I_C and I_D stand for the MALDI-TOF MS intensities for the reference and series A_n , B_n , C_n and D_n , respectively, while f_{ref} , f_A , f_B , f_C and f_D are the MALDI-TOF MS response factors for the reference and the series A_n , B_n , C_n and D_n , respectively. The relative MALDI-TOF MS response factors of the oligomer series with respect to that of series A_n were obtained as $f_A/f_B = p_2/p_1$, $f_A/f_C = p_3/p_1$ and $f_A/f_D = p_4/p_1$. For polymer diols (PPG, PTHF, PCLD) eq. S1 reduces to eq. S2

$$I_{ref} = p_1 I_A + p_2 I_B + p_3 I_C$$
(S2)

II. Derivation of eq. 21

Using eqs. 10-12, from eq. 12 the time (t) can be expressed as

$$t = \frac{-\ln(X_{A_n})}{4k_1}$$
(S3)

Substituting eq. S3 into eq. 11, we get eq. S4.

$$X_{B_{n}} = \frac{1}{\frac{k_{2}}{2k_{1}} - 1} \left(X_{A_{n}} - e^{-\ln(X_{A_{n}})\frac{k_{2}}{2k_{1}}} \right)$$
(S4)

Denoting $k_2/2k_1$ as α and substituting it into eq. S4, after rearrangement, eq. S5 can be obtained which is equivalent to eq. 21.

$$X_{B_n} = \frac{X_{A_n}^{\alpha} - X_{A_n}}{1 - \alpha}$$
(S5)

III. Derivation of eq. 23

Using eqs. 17-20, from eq. 17 the time (t) can be expressed as

$$t = \frac{-\ln(X_{A_n})}{6k_1}$$
(S6)

Substituting eq. S6 into eq. 19, we get eq. S7.

$$\begin{split} X_{C_{n}}(t) &= \frac{\frac{2k_{2}}{3k_{1}}}{(1 - \frac{2k_{2}}{3k_{1}})(1 - \frac{k_{3}}{3k_{1}})} \left(X_{A_{n}} - e^{\ln((X_{A_{n}})\frac{k_{3}}{3k_{1}}} \right) + \\ &+ \frac{1}{(1 - \frac{2k_{2}}{3k_{1}})(1 - \frac{k_{3}}{2k_{2}})} \left(e^{\ln((X_{A_{n}})\frac{k_{3}}{3k_{1}}} - e^{\ln((X_{A_{n}})\frac{2k_{2}}{3k_{1}}} \right) \right) \end{split}$$
(S7)

Substituting $\alpha = 2k_2/3k_1$ and $\beta = k_3/2k_2$. into eq. S7 and taking into account that $\alpha\beta = k_3/3k_1$, eq. S8 can be obtained which is equivalent to eq. 23.

$$X_{C_n} = \frac{\alpha}{(1-\alpha)(1-\alpha\beta)} (X_{A_n} - X_{A_n}^{\alpha\beta}) + \frac{\alpha}{(1-\alpha)(1-\beta)} (X_{A_n}^{\alpha\beta} - X_{A_n}^{\alpha})$$
(S8)

IV. Figures

Fig. S1. Product distributions *versus* time in the PTHF-MDI reaction determined by MALDI-TOF MS. The solid lines represent the fitted curves calculated by eqs. 10-12. Experimental conditions: $[MDI]_0 = 0.32 \text{ M}$, $[PCLD]_0 = 0.01 \text{ M}$ and T = 80 °C.

Fig. S2. ESI-MS/MS spectrum of the [PPG_GL+3MDI+3CH₃OH+2Na]²⁺ adduct ion with a number of repeat units n=16. ESI-MS/MS spectrum was obtained at collision energy of 142 eV.