# Supporting Information 

# Uncatalyzed Reactions of 4,4-Diphenylmethane-Diisocyanate with Polymer <br> Polyols as Revealed by Matrix-Assisted Laser Desorption/Ionization Mass Spectrometry 

Tibor Nagy ${ }^{1}$, Borbála Antal ${ }^{1}$, Anita Dékány-Adamoczky ${ }^{1}$, József Karger-Kocsis ${ }^{2}$ Miklós Zsuga ${ }^{1}$, Sándor Kéki1*<br>${ }^{1}$ Department of Applied Chemistry, University of Debrecen, Egyetem tér1, H-4032 Debrecen, Hungary<br>${ }^{2}$ Department of Polymer Engineering, Budapest University of Technology and Economics, Múegyetem rkp. 3, H-1111 Budapest, Hungary

Corresponding author's e-mail: keki.sandor@science.unideb.hu

## I. Estimation of the relative MALDI-TOF MS response factors

The intensities of the reference were compared to those of the different series, and the corresponding relative response factors were estimated by means of eq. S1.

$$
\begin{equation*}
\mathrm{I}_{\mathrm{ref}}=\mathrm{p}_{1} \mathrm{I}_{\mathrm{A}}+\mathrm{p}_{2} \mathrm{I}_{\mathrm{B}}+\mathrm{p}_{3} \mathrm{I}_{\mathrm{C}}+\mathrm{p}_{4} \mathrm{I}_{\mathrm{D}} \tag{S1}
\end{equation*}
$$

where $\mathrm{p}_{1}=\mathrm{qf}_{\text {ref }} / \mathrm{f}_{\mathrm{A}}, \mathrm{p}_{2}=\mathrm{qf} \mathrm{r}_{\text {ref }} / \mathrm{f}_{\mathrm{B}}, \mathrm{p}_{3}=\mathrm{qf} \mathrm{f}_{\text {ref }} / \mathrm{f}_{\mathrm{C}}$ and $\mathrm{p}_{4}=\mathrm{q} \mathrm{f}_{\text {ref }} / \mathrm{f}_{\mathrm{D}}, \mathrm{q}$ is the concentration ratio of the reference and the starting polymer triol (PPG_GL), $\mathrm{I}_{\text {ref }}, \mathrm{I}_{\mathrm{A}}, \mathrm{I}_{\mathrm{B}}, \mathrm{I}_{\mathrm{C}}$ and $\mathrm{I}_{\mathrm{D}}$ stand for the MALDITOF MS intensities for the reference and series $A_{n}, B_{n}, C_{n}$ and $D_{n}$, respectively, while $f_{\text {ref }}, f_{A}$, $f_{B}, f_{C}$ and $f_{D}$ are the MALDI-TOF MS response factors for the reference and the series $A_{n}, B_{n}$, $C_{n}$ and $D_{n}$, respectively. The relative MALDI-TOF MS response factors of the oligomer series with respect to that of series $A_{n}$ were obtained as $f_{A} / f_{B}=p_{2} / p_{1}, f_{A} / f_{C}=p_{3} / p_{1}$ and $f_{A} / f_{D}=p_{4} / p_{1}$. For polymer diols (PPG, PTHF, PCLD) eq. S1 reduces to eq. S2

$$
\begin{equation*}
\mathrm{I}_{\mathrm{ref}}=\mathrm{p}_{1} \mathrm{I}_{\mathrm{A}}+\mathrm{p}_{2} \mathrm{I}_{\mathrm{B}}+\mathrm{p}_{3} \mathrm{I}_{\mathrm{C}} \tag{S2}
\end{equation*}
$$

## II. Derivation of eq. 21

Using eqs. $10-12$, from eq. 12 the time ( t ) can be expressed as

$$
\begin{equation*}
\mathrm{t}=\frac{-\ln \left(\mathrm{X}_{\mathrm{A}_{\mathrm{n}}}\right)}{4 \mathrm{k}_{1}} \tag{S3}
\end{equation*}
$$

Substituting eq. S3 into eq. 11, we get eq. S4.

$$
\begin{equation*}
\mathrm{X}_{\mathrm{B}_{\mathrm{n}}}=\frac{1}{\frac{\mathrm{k}_{2}}{2 \mathrm{k}_{1}}-1}\left(\mathrm{X}_{\mathrm{A}_{\mathrm{n}}}-\mathrm{e}^{-\ln \left(\mathrm{X}_{\mathrm{A}_{\mathrm{n}}}\right) \frac{\mathrm{k}_{2}}{2 \mathrm{k}_{1}}}\right) \tag{S4}
\end{equation*}
$$

Denoting $\mathrm{k}_{2} / 2 \mathrm{k}_{1}$ as $\alpha$ and substituting it into eq. S 4 , after rearrangement, eq. S 5 can be obtained which is equivalent to eq. 21.

$$
\begin{equation*}
X_{B_{n}}=\frac{X_{A_{n}}^{\alpha}-X_{A_{n}}}{1-\alpha} \tag{S5}
\end{equation*}
$$

## III. Derivation of eq. 23

Using eqs. 17-20, from eq. 17 the time ( t ) can be expressed as

$$
\begin{equation*}
\mathrm{t}=\frac{-\ln \left(\mathrm{X}_{\mathrm{A}_{\mathrm{n}}}\right)}{6 \mathrm{k}_{1}} \tag{S6}
\end{equation*}
$$

Substituting eq. S6 into eq. 19, we get eq. S7.

$$
\begin{align*}
& \mathrm{X}_{\mathrm{C}_{\mathrm{n}}}(\mathrm{t})=\frac{\frac{2 \mathrm{k}_{2}}{3 \mathrm{k}_{1}}}{\left(1-\frac{2 \mathrm{k}_{2}}{3 \mathrm{k}_{1}}\right)\left(1-\frac{\mathrm{k}_{3}}{3 \mathrm{k}_{1}}\right)}\left(\mathrm{X}_{\mathrm{A}_{\mathrm{n}}}-\mathrm{e}^{\ln \left(\left(\mathrm{X}_{\mathrm{A}_{\mathrm{n}}}\right) \frac{\mathrm{k}_{3}}{3 \mathrm{k}_{1}}\right.}\right)+ \\
& +\frac{1}{\left(1-\frac{2 \mathrm{k}_{2}}{3 \mathrm{k}_{1}}\right)\left(1-\frac{\mathrm{k}_{3}}{2 \mathrm{k}_{2}}\right)}\left(\mathrm{e}^{\ln \left(\left(\mathrm{X}_{\mathrm{A}_{\mathrm{n}}}\right) \frac{\mathrm{k}_{3}}{3 \mathrm{k}_{1}}-e^{\ln \left(\left(\mathrm{X}_{\mathrm{A}_{\mathrm{n}}}\right) \frac{2 \mathrm{k}_{2}}{3 \mathrm{k}_{1}}\right.}\right)}\right. \tag{S7}
\end{align*}
$$

Substituting $\alpha=2 \mathrm{k}_{2} / 3 \mathrm{k}_{1}$ and $\beta=\mathrm{k}_{3} / 2 \mathrm{k}_{2}$. into eq. S7 and taking into account that $\alpha \beta=\mathrm{k}_{3} / 3 \mathrm{k}_{1}$, eq. S 8 can be obtained which is equivalent to eq. 23 .
$X_{C_{n}}=\frac{\alpha}{(1-\alpha)(1-\alpha \beta)}\left(X_{A_{n}}-X_{A_{n}}^{\alpha \beta}\right)+\frac{\alpha}{(1-\alpha)(1-\beta)}\left(X_{A_{n}}^{\alpha \beta}-X_{A_{n}}^{\alpha}\right)$

## IV. Figures



Fig. S1. Product distributions versus time in the PTHF-MDI reaction determined by MALDITOF MS. The solid lines represent the fitted curves calculated by eqs. 10-12. Experimental conditions: $[\mathrm{MDI}]_{\mathrm{o}}=0.32 \mathrm{M},[\mathrm{PCLD}]_{\mathrm{o}}=0.01 \mathrm{M}$ and $\mathrm{T}=80^{\circ} \mathrm{C}$.


Fig. S2. ESI-MS/MS spectrum of the $\left[\text { PPG_GL }+3 \mathrm{MDI}+3 \mathrm{CH}_{3} \mathrm{OH}+2 \mathrm{Na}\right]^{2+}$ adduct ion with a number of repeat units $n=16$. ESI-MS/MS spectrum was obtained at collision energy of 142 eV .

