Supplementary Material (ESI) for Chemical Communication

This journal is (c) The Royal Society of Chemistry 2009

Palladium Catalyzed Domino Reaction of 1,4-Disubstituted 1,2,3-Trizoles via Double C-H Activation: One-pot Synthesis of Triazolo [1,5-f] Phenanthridines

Avnish Kumar, ${ }^{\text {a }}$ Sundar S. Shinde ${ }^{\mathrm{a}}$, Dharmendra Kumar Tiwari, ${ }^{\text {a }}$ Balasubramanyam Sridhar ${ }^{\text {b }}$ and Pravin R. Likhar* ${ }^{\text {a }}$

Table of contents

$\mathbf{1}$	General Information	2
$\mathbf{2}$	General Experimental Procedures	$2-3$
$\mathbf{3}$	Palusible mechanism for heterocondensation	3
$\mathbf{4}$	${ }^{\text {I }} \mathrm{H}$ and ${ }^{\text {I3 }} \mathrm{C}$ Spectra of compounds (2a-2t)	$4-22$
$\mathbf{5}$	${ }^{\mathrm{I}} \mathrm{H}^{\mathrm{Hand}}{ }^{13} \mathrm{C}$ Spectra of compounds (4aa-4ae)	$22-38$
$\mathbf{6}$	X-ray Single Crystal Structure of 2a	$39-40$
$\mathbf{7}$	References	40

Experimental Section

General information:

All reagents were purchased from commercial suppliers and used without further purification. All experiments were carried out under nitrogen atmosphere. All the solvents used for the reaction were distilled before use. The product purification by column chromatography was accomplished using silica gel 100-200 mesh. Analytical TLC was performed with Merck silica gel 60 F254 plates, and the products were visualized by UV detection. The ${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR spectra were recorded on a Bruker-Avance (300 MHz); Inova (400 MHz) and Avance (500 MHz) spectrophotometer using CDCl_{3} and TMS as the internal standard. Chemical shifts $(\delta=)$ are reported in ppm using TMS as an internal standard, and spin -spin coupling constants (J) are given in Hz. Multiplicities in the ${ }^{1} \mathrm{H}$ NMR spectra are described as: $\mathrm{s}=$ singlet, $\mathrm{d}=$ doublet, $\mathrm{t}=$ triplet, $\mathrm{q}=$ quartet, $\mathrm{qt}=$ quintet, $\mathrm{m}=$ multiplet, $\mathrm{bs}=$ broad singlet; coupling constants are reported in Hz. Low (MS) and high (HRMS) resolution mass spectra were recorded on a Waters 2695 and Thermo Scientific Exactive spectrometer respectively and mass/charge (m / z) ratios are reported as values in atomic mass units. All the melting point is uncorrected.

General experimental procedure for the synthesis of 2-iodophenyl 4-alkyl/aryl-1H 1,2,3-triazole

 $\underline{(1 a-1 y)}{ }^{1}$:

To a stirred solution of 2-iodoaniline (3.0 mmol) in $4 \mathrm{~N} \mathrm{HCl}(10 \mathrm{~mL})$ was added $\mathrm{NaNO}_{2}(0.82 \mathrm{gm}, 12$ mmol) slowly in portions over a period of 15 mins at $0^{\circ} \mathrm{C}$. The reaction mixture was allowed to stir at same temperature for another 30 min . To the above reaction mixture sodium azide ($0.59 \mathrm{gm}, 9.0 \mathrm{mmol}$) was slowly added in portions and the mixture allowed to come to the room temperature and stirred for 4-12 hrs (monitored by TLC using hexane: ethyl acetate ($8: 2$) solvent). The reaction mixture was successively diluted with water. The aqueous layer was extracted with ethyl acetate ($3 \times 60 \mathrm{~mL}$), and combined organic layers were washed with water, followed by brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated under reduced pressure to obtain crude azide derivatives which was carried forward for the
click reaction without any further purification. To a solution of crude azide ($0.49 \mathrm{gm}, 2.0 \mathrm{mmol}$) and terminal alkyl/aryl acetylene (2.0 mmol) in DMF (10 mL) was added $\mathrm{CuI}(10 \mathrm{~mol} \%)$ and the mixture was heated at $100{ }^{\circ} \mathrm{C}$ for 8 hrs . The aqueous layer was extracted with ethyl acetate (3 x 40 mL), and combined organic layer was washed with water ($3 \times 50 \mathrm{~mL}$), followed by brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated under reduced pressure to obtain crude triazole derivatives in quantitative yields.

Plausible mechanism for hetero aryl cross coupling: Based on the literature reports ${ }^{2}$ a plausible mechanism for the cross coupling reaction between 1a and 3a in the presence norbornene can be rationalized (depicted in ESI-scheme-1). Intially, the aryl iodide (3a) oxidatively insert to $\mathrm{Pd}(0)$ to give $\operatorname{Pd}(I I)$ (A) species and then norbornene inserts into \mathbf{A} to give corbopalladacyclic intermidiate (B) after removal of HI in the presence of base. The oxidative addition of substitiuted triazole 1a to corbopalladacyclic intermidiate (B) to give Pd(IV) intermidiate (C). Aryl-aryl bond formation takes place via reductive elimination and removal of nonbornene to give (D) which led to the formation of desired heterocoupled product (4aa) via intramolecualr C-H activation.

ESI-scheme-1: Plausible mechanism for heterocoupling

＋

| 170 | 160 | 150 | 140 | 130 | 120 | 110 | 100 | 90 | 80 | 70 | 60 | 50 | 40 | 30 | 20 | 10 | 0 |
| :--- |

$\underbrace{\text { Qon }}$

$\begin{array}{llllllllllll}210 & 200 & 190 & 180 & 170 & 160 & 150 & 140 & 130 & 120 & 110 & 100\end{array}$

| 180 | 170 | 160 | 150 | 140 | 130 | 120 | 110 | 100 | 90 | 8 | 70 | 60 | 50 | 40 | 30 | 20 | 10 | 0 |
| :--- |

mm~~N

| 170 | 160 | 150 | 140 | 130 | 120 | 110 | 100 | 90 | 80 | 70 | 60 | 50 | 40 | 30 | 20 | 10 | 0 |
| :--- |

170	160	150	140	130	120	110	100	90	80	70	60	50	40	30	20	10	0

HM前

[^0]
ベм

[^1]

[^2]

| 170 | 160 | 150 | 140 | 130 | 120 | 110 | 100 | 90 | 80 | 70 | 60 | 50 | 40 | 30 | 20 | 10 | 0 |
| :--- |

| 170 | 160 | 150 | 140 | 130 | 120 | 110 | 100 | 90 | 80 | 70 | 60 | 50 | 40 | 30 | 20 | 10 | 0 |
| :--- |

\%		
-	,	
$\stackrel{1}{1}$		$\xrightarrow{\text { N-T }}$

 ল゙ ${ }^{(1)}$

| 190 | 180 | 170 | 160 | 150 | 140 | 130 | 120 | 110 | 100 | 90 | 80 | 70 | 60 | 50 | 40 | 30 | 20 | 10 | 0 |
| :--- |

 が m응 N ヘペ	

 ${ }^{13} \mathrm{C}$ NMR， CDCl_{3} ， 100 MHz ；4xa

| 170 | 160 | 150 | 140 | 130 | 120 | 110 | 100 | 90 | 80 | 70 | 60 | 50 | 40 | 30 | 20 | 10 |
| :--- |

comes,

1		1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	,
180	170	160	150	140	130	120	110	100	90	80	70	60	50	40	30	20	10

$\begin{array}{ll}\text { N } \\ \text { in } \\ \text { ì } \\ \text { i } & \text { i }\end{array}$

	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
190	180	170	160	150	140	130	120	110	100	90	80	70	60	50	40	30	20	10	0

${ }^{13} \mathrm{C}$ NMR, CDCl_{3},
125 MHz ; 4ae

| 170 | 160 | 150 | 140 | 130 | 120 | 110 | 100 | 90 | 80 | 70 | 60 | 50 | 40 | 30 | 20 | 10 | 0 |
| :--- |

X-Ray Crystallographic Study:

ORTEP structure of 2a

X-ray data of 2 a compound was collected at room temperature using a Bruker Smart Apex CCD diffractometer with graphite monochromated $\mathrm{MoK} \alpha$ radiation $\left(\lambda=0.71073 \AA\right.$) with ω-scan method. ${ }^{2}$ Preliminary lattice parameters and orientation matrices were obtained from four sets of frames.
Integration and scaling of intensity data were accomplished using SAINT program. ${ }^{3}$ The structures were solved by Direct Methods using SHELXS ${ }^{3}$ and refinement was carried out by full-matrix least-squares technique using SHELXL. ${ }^{4}$ The crystal was twinned, and the structure was refined using a HKLF5 file containing data for two twin domains, with a refined BASF of 0.31.Anisotropic displacement parameters were included for all non-hydrogen atoms. The atoms C21-C24 were disordered over two sites (C21/C22/C23/C24 and C211/C221/C231/C241). The site-occupancy factors of disordered atoms were refined to $0.790(9)$ and $0.210(9)$. DELU and DFIX constraints were applied to the disordered atoms. All H atoms were positioned geometrically and treated as riding on their parent C atoms $[\mathrm{C}-\mathrm{H}=$ $0.93-0.97 \AA$ and $\mathrm{U}_{\text {iso }}(\mathrm{H})=1.5 \mathrm{U}_{\mathrm{eq}}(\mathrm{C})$ for methyl H or $1.2 \mathrm{U}_{\mathrm{eq}}(\mathrm{c})$ for other H atoms]. The methyl groups were allowed to rotate but not to tip.
Crystal Data for 2a: $\mathrm{C}_{24} \mathrm{H}_{26} \mathrm{~N}_{6}(M=398.51)$: triclinic, space group P-1 (no. 2), $a=7.619$ (2) $\AA, b=$ $9.692(3) \AA, c=15.884(5) \AA, \alpha=75.952(5)^{\circ}, \beta=79.091(5)^{\circ}, \gamma=71.433(5)^{\circ}, V=1070.6(6) \AA^{3}, Z=2$, $T=294(2) \mathrm{K}, \mu(\mathrm{MoK} \alpha)=0.077 \mathrm{~mm}^{-1}$, Dcalc $=1.236 \mathrm{~g} / \mathrm{mm}^{3}, 9893$ reflections measured $(4.522 \leq 2 \Theta \leq$
50), 9893 unique which were used in all calculations. The final R_{1} was $0.0906\left(\mathrm{I}>2 \sigma(\mathrm{I})\right.$) and $w R_{2}$ was 0.2933 (all data). CCDC 1408841 contains supplementary Crystallographic data for the structure. These data can be obtained free of charge at www.ccdc.cam.ac.uk/conts/retrieving.html [or from the Cambridge Crystallographic Data Centre (CCDC), 12 Union Road, Cambridge CB2 1EZ, UK; fax: +44(0) 1223336 033; email: deposit@ccdc.cam.ac.uk].

References

1. G. C Senadi, W-P Hu, S. S. K. Boomiathan and J-J Wang, Adv. Synth. Catl. 2013, 355, 3679. 2. (a) M. Catellani, F. Frignani, A. Rangoni, Angew. Chem. Int. Ed. 1997, 36, 119. (b) M. Catellani, M. C. Fagnola, Angew. Chem. Int. Ed. 1994, 33, 2421. (c) "Novel Methods of Aromatic Functionalization Using Palladium and Norbornene as a Unique Catalytic System", M. Catellani, Top Organomet Chem, 2005, 14, 21-53.
2. SMART \& SAINT. Software Reference manuals. Versions 6.28a \& 5.625, Bruker Analytical Xray Systems Inc., Madison, Wisconsin, U.S.A., 2001.
3. Sheldrick, G. M. SHELXS97 and SHELXL97, Programs for crystal structure solution and refinement; University of Gottingen: Germany, 1997.

[^0]: $\begin{array}{llllllllllll}210 & 200 & 190 & 180 & 170 & 160 & 150 & 140 & 130 & 120 & 110 & 100\end{array}$

[^1]:

[^2]: $\begin{array}{llllllllllll}210 & 200 & 190 & 180 & 170 & 160 & 150 & 140 & 130 & 120 & 110 & 100\end{array}$

