A real time colorimetric 'two in one' kit for tracking ppb level of uric acid and Hg²⁺ in live HeLa S3 cell and Hg²⁺ induced 'keto-enol' tautomerism

Chanda Kumari, Dibyendu Sain, Ashish Kumar, Sushanta Debnath, Partha Saha and Swapan Dey*

Table of content				
Crystal structure and Crystallographic data for RNpd1	2			
Characteristic experimental spectra (NMR, mass and IR spectra)	3-13			
Visual colour change of RNpd1with different metal ions	14			
Binding constant calculation by UV-Vis and fluorescence titration	15-18			
Comparision of Fluorescence specctra of coomp B and Rhodamine B.	19			
Competitive FL specctra of RNpd1 with UA and other biomolecules	19			
Quantum yield calculation	20			
Calculation of limit of detection (LOD)	20-22			
Bar diagram of RNpd1 with different metal ions and Uric acid	22			
Influence of pH in absorbance of RNpd1	23			
Reversibility of RNpd1:Hg ²⁺ complex with EDTA.	23			

Fig. S1 Crystal structure of RNpd1

Table S1: Crystallographic data for RNpd1

	RNpd1
CCDC No.	1420224
Formula:	$C_{36}H_{35}N_5O_3$
Formula Weight:	585.6948
Crystal System:	Triclinic
Space group:	P -1 (2)
a, b, c [Å]:	16.9751(5), 20.3272(6), 120.5345(6)
α, β, γ (°):	$\alpha = 90.308^{\circ}(2), \beta = 105.442^{\circ}(3), \gamma = 107.538^{\circ}(3)$
V [Å] ³ :	6484.0(4)
Z:	8
$D(calc) [g/cm^3]:$	1.001
μ (Mo-K α) [mm ⁻¹]:	0.078
F(000):	2464
Crystal Size [mm]:	0.16 x 0.14 x 0.10
Temperature (K):	293(2)
Radiation [Å]: Mo-Kα	0.71073
$\theta_{\text{Min-Max}} [^{\text{o}}]:$	2.712, 27.000
Dataset:	$-21 \le h \le 21$
	$-17 \le k \le 25$
	$-25 \le 1 \le 26$
Tot., Uniq. Data, R(int):	52977, 18598, 0.1358
Observed data [I > 2.0 σ (I)]	27747
Refinement: N _{ref} , N _{par} :	27747, 1585
R, wR2, S:	0.1032, 0.2939, 1.035
Max. & Av. Shift/Error:	0.014, 0.001
Min. & Max. Resd. Dens. [e/ Å ³]:	-0.355, 1.001.

¹H-NMR spectrum of Comp A in d₆-DMSO

¹³C-NMR spectrum of RNpd1 in CDCl₃

¹H-NMR spectrum of Comp B in CDCl₃:

¹H-NMR spectrum of RNpd1 in CDCl₃

¹H-NMR spectrum of RNpd1 in d₆-DMSO

¹H-NMR spectrum of RNpd1:Hg²⁺ in CDCl₃

¹H-NMR spectrum of RNpd1:UA in d₆-DMSO

¹³C-NMR spectrum of RNpd1 in CDCl₃

IR spectrum of RNpd1

Mass spectrum of RNpd1

Mass spectrum of RNpd1:Hg²⁺ complex

Mass spectrum of RNpd1:UA complex

Visual change of RNpd1with different metal ions

Fig. S2 Visual colour change of **RNpd1** (10 μ M) with different metal ions (Li⁺, Fe³⁺, Ni²⁺, Co²⁺, Cu²⁺, Hg²⁺, Cd²⁺, Zn²⁺, Pb²⁺, Mg²⁺ in pH 7.0 phosphate buffer/CH₃OH (1:2, v/v).

Fig. S3 Visual fluorescence change under long wavelength UV light of **RNpd1** (10 μ M) with different metal ions (Li⁺, Fe³⁺, Ni²⁺, Co²⁺, Cu²⁺, Rec, Hg²⁺, Cd²⁺, Zn²⁺, Pb²⁺, Mg²⁺) in pH 7.0 phosphate buffer/CH₃OH (1:2, v/v).

Binding constant calculation by UV-Vis and fluorescence titration method using linear regreation analysis

The reciprocal of intensity difference $(1/\Delta I)$, where $\Delta I = (I - I_0)$, was plotted against the reciprocal of concentration of guest (1/[G]) for the calculation of association constant (K_a) using Benesi-Hildebrand linear regression analysis following equation (i) where association constant K_a = intercept/slope.

Fig. S4 Binding constant calculation graph of RNpd1 with Hg²⁺ using UV-vis titration.

Fig. S5 Binding constant calculation graph of RNpd1 with UA using UV-vis titration.

Fig. S6 Binding constant calculation graph of RNpd1 with adenine using UV-vis titration.

Fig. S7 Binding constant calculation graph of RNpd1 with guanine using UV-vis titration.

Fig. S8 Binding constant calculation graph of RNpd1 with Hg²⁺ using fluorescence titration.

Fig. S9 Binding constant calculation graph of RNpd1 with UA using fluorescence titration.

Fig. S10 Binding constant calculation graph of **RNpd1** with adenine using fluorescence titration.

Fig. S11 Binding constant calculation graph of **RNpd1** with guanine using fluorescence titration.

Fig. S12 Comparision of Fluorescence specctra of comp B and Rhodamine B in pH 7.0 phosphate buffer/CH₃OH (1:2, v/v).

Fig. S13 Competitive Fluorescence spectra of RNpd1 with UA and other biomolecules in pH 7.0 phosphate buffer/CH₃OH (1:2, v/v).

Quantum yield calculation:

Fluorescence quantum yields (Φ) were calculated using Equation given below (1) (Wu, D.; Huang, W.; Duan, C.; Lin, Z.; Meng, Q. *Inorg. Chem.* **2007**, *46*, 1538) using Rhodamine B ($\Phi_f = 0.49$ in ethanol) as standards.

$$\Phi_{u} = \Phi_{s} \times \frac{I_{u}}{I_{s}} \times \frac{A_{s}}{A_{u}} \times \left(\frac{\eta_{u}}{\eta_{s}}\right)^{2}$$

Where Φ_u and Φ_s are the fluorescence quantum yields of the sample and standard, I_u and I_s are the integrated emission intensities of the sample and standard, A_u and A_s are the absorbance of the sample and standard at the excitation wavelength (568 nm), and η_u and η_s are the refractive indices of the sample and standard solutions, respectively.

Table S2: Quantum yield calculation and molar extinction coefficient value

	λ_{max} (Absorption)	λ_{max} (Emission)	Quantum Yield	Molar Extinction coefficient
RNpd1	328	380	0.017	3.26
RNpd1:Hg ²⁺	568	617	0.353	5.86
RNpd1:UA	561	582	0.251	4.95

Calculation of limit of detection (LOD):

The detection limit of **RNpd1** with Hg^{2+} and **UA** were calculated on the basis of fluorescence titration data. To determine the standard deviation for the fluorescence intensity, the emission intensity of the individual receptors without any anion was measured by 10 times and the standard deviation of blank measurements was calculated. The limit of detection (LOD) of the receptor for sensing Hg^{2+} and **UA** were determined from the following equation:

$LOD = K \times SD/S$

Where K = 2 or 3 (we take 3 in this case); SD is the standard deviation of the blank receptor (**RNpd1**) solution; S is the slope of the calibration curve.

For RNpd1 with Hg²⁺:

From the linear fit graph we get slope = 1.64×10^8 , and SD value is 0.51. Thus using the above formula we get the Limit of Detection = 9.32×10^{-9} M i.e. **RNpd1** can detect **Hg**²⁺ up to this very lower concentration by fluorescence techniques.

For RNpd1 with UA:

From the linear fit graph we get slope = 9.90×10^7 , and SD value is 0.51. Thus using the above formula we get the Limit of Detection = 1.54×10^{-8} M i.e. **RNpd1** can detect **UA** up to this very lower concentration by fluorescence techniques.

Fig. S14 Bar diagram of RNpd1 with different metal ions and Uric acid in pH 7.0 phosphate buffer/CH₃OH (1:2, v/v).

Fig. S15 Influence of pH in absorbance of RNpd1 (558 nm) in pH 7.0 phosphate buffer/CH₃OH (1:2, v/v).

Fig. S16 Reversibility of $RNpd1:Hg^{2+}$ complex with EDTA in pH 7.0 phosphate buffer/CH₃OH (1:2, v/v).