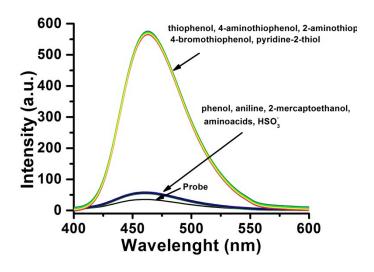
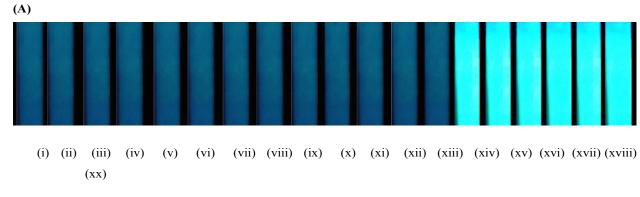
Supporting Information

Green synthesis of a benzothiazole based 'turn-on' type fluorimetric probe and its use for the selective detection of thiophenols in environmental samples and living cells


Dipratn G. Khandare, Mainak Banerjee,* Rishabh Gupta, Nupur Kumar, Anasuya Ganguly, Deepak Singh and Amrita Chatterjee*

1.	Synthetic procedure of compound 2	S2
2.	Selectivity study with analytes	S2
3.	Selective detection of aqueous thiophenols on paper strips and TLC plates	S3
4.	Real sample recovery table	S3
5.	MTT assay of probe 1	S3
6.	¹ H NMR, ¹³ C NMR and HR-MS spectra of probe 1 and 2	S5-S10

Synthesis of 2-(benzo[d]thiazol-2-yl)phenol (2):


In a 10 mL of round-bottomed flask was taken o-aminothiophenol (53 μ L, 0.5 mmol) and salicylaldehyde (53 μ L, 0.5 mmol) in 1 mL of water followed by addition of CTAB (18.5 mg, 0.05 mmol). The reaction mixture was stirred at room temperature for 1 h. The reaction mixture was diluted with water (5 mL) and extracted with ethyl acetate (3 x 5 mL). The combined organic layer was collected, washed with brine, dried over anhydrous sodium sulphate and concentrated to afford the crude product, which was purified over silica gel (60-120 mesh) with 5:95 EtOAc:Petroleum ether to afford pure 2-(2-hydroxyphenyl)benzothiazole (2) (93 mg, 82%). 1 H NMR (400 MHz, CDCl₃): δ (ppm) 6.96 (1H, t, J = 7.6 Hz), 7.10 (1H, d, J = 8.4 Hz), 7.36-7.43 (2H, m), 7.51 (1H, t, J = 7.6 Hz), 7.69 (1H, d, J = 7.6 Hz), 7.90 (1H, d, J = 8.0 Hz), 7.99 (1H, d, J = 8.0 Hz); 13 C NMR (100 MHz): δ (ppm) 111.53, 112.62, 114.27, 116.24, 116.90, 120.28, 121.42, 123.42, 123.17, 127.33, 127.50, 127.53, 146.55, 152.71, 164.12; HR-MS (ESI): m/z calcd for $C_{13}H_9NOS$ [M+H]+ 228.0438, found 228.0445.

Selectivity studies with different analytes

Figure S1. Maximum fluorescence response of probe 1 in 45% DMF-PBS (pH = 7.2) upon addition of different analytes presence of other nucleophiles) in presence of a fixed concentration of probe 1 (30 μ M) [λ_{ex} = 365 nm].

Selective Detection of thiophenols by paper strips (A) and TLC plates (B).

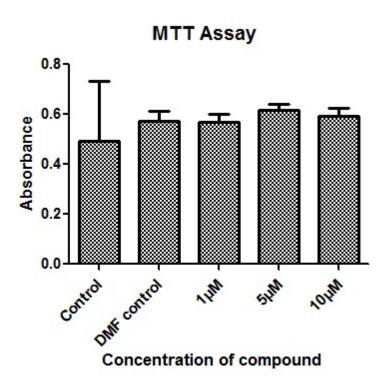
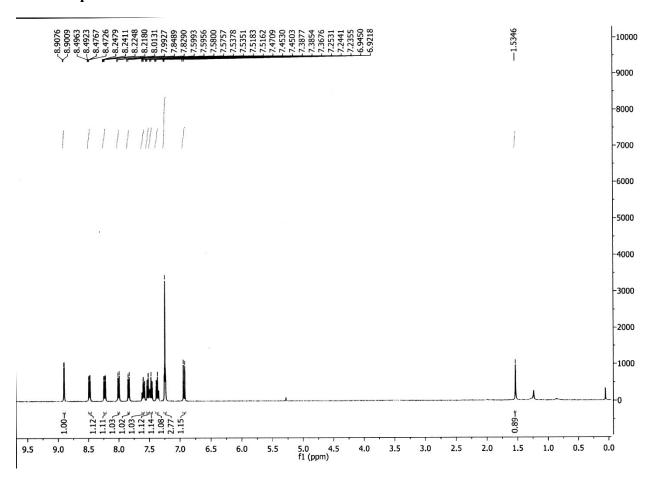

Figure S2. Response of amino acids, aliphatic thiols, other nucleophiles in the presence of probe **1** soaked on paper strips (**A**) and TLC plates (**B**): (i) = probe 1; (ii) = Cysteine, (iii) = Argenine, (iv) = Luecine,(v) = L-Proline, (vi) = Alanine, (vii) = Glycine, (viii) = Histidine, (ix) = Glutathione, (x) = phenol, (xi) = aniline, (xii) = 2-Mercaptoethanol, (xiii) = HSO_3^- , (xiv) = Thiophenol, (xv) = Pyridine-2-thiol, (xvi) = 2-Aminothiophenol, (xvii) = 4-Aminothiophenol, (xviii) = 4-Bromothiophenol and (xx) = thiophenol in the presence of other nucleophiles.

Table S1. Real sample analysis

Sl. no.	Sample	Concentration found	Actual	Recovery
		from graph	concentration	%
		(μM)	(μM)	
1.	Soil sample	1.164	1.2	97%
2.	Water sample 1 (Tap water)	1.503	1.5	100.2%
۷.				
2	Water sample 2 (Zuari river water) 2.928 3.00	2 028	3.00	97.6%
3		3.00	J1.070	


MTT assay

As a part of the standard protocol the cytotoxicity of probe 1 were assessed on HeLa cell line using MTT assay before fluorescence cell imaging studies. In the concentration range 1-20 μ M of probe 1 with 24 h incubation, hardly any cell death was seen (ESI) indicating the probe molecule is non-toxic even at much higher concentration than that required for the detection studies.

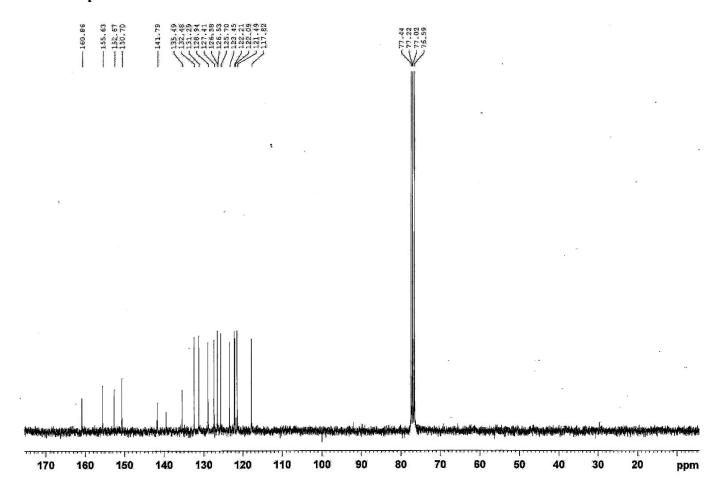
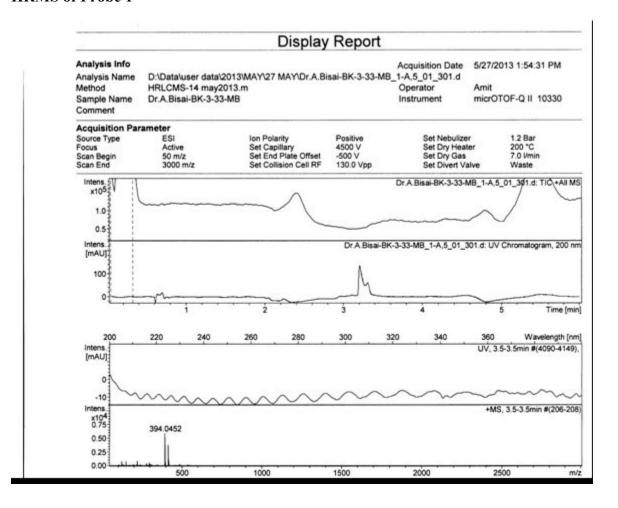
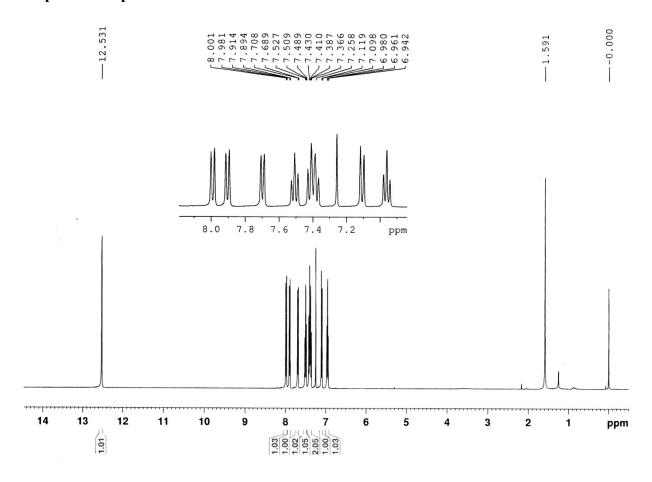
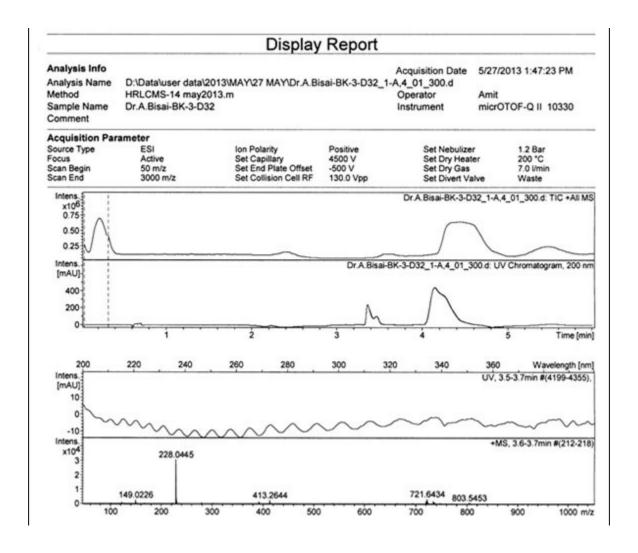


Figure S3. Cytotoxic assay of the probe **1** at different concentrations. The percentage of cell survival was monitored after different time intervals.


¹H NMR probe 1


¹³C NMR probe 1

HRMS of Probe 1


¹H spectra compound 2

¹³C NMR of compound 2

HRMS of compound 2

