Simultaneous adsorptive removal of fluoride and phosphate by magnesiapullulan composite from aqueous solution

Yuanyao Ye¹; Ying Hu; Zakir Hussain; Xi Li; Daosheng Li; Jianxiong Kang^{1,*}

¹School of Environmental Science and Engineering, Huazhong University of Science and Technology, No. 1037 Luoyu Road, Wuhan 430074, PR China

*Corresponding author. <u>Tel:+86</u> 2787792512. Fax: +86 2787792172 E-mail address: jxkang@hust.edu.cn

Supplementary Figure captions

Supplementary Fig. S1 XRD patterns of (a) MgOP (b) MgOP after the simultaneous adsorption of fluoride and phosphate

Supplementary Fig. S2 Effect of adsorbent dose on simultaneous adsorption of fluoride and phosphate ($C_{0(F)}=C_{0(P)}=10$ mg/L, pH 7.0, reaction temperature 298 K)

Supplementary Fig. S3 Effect of initial pH on simultaneous adsorption of fluoride and phosphate ($C_{0(F)}=C_{0(P)}=10$ mg/L, reaction temperature 298 K)

Supplementary Fig. S4 Effect of the main forms of phosphate existing in the domestic wastewater on simultaneous adsorption of fluoride and phosphate ($C_{0(F)}$ = 10 mg/L, pH 7.0, reaction temperature 298 K)

Supplementary Fig. S1

Supplementary Fig. S2

Supplementary Fig. S3

different groups (A, B, C, D, E and F reflect the different groups which coexist with fluoride ions in aqueous solution, i.e., A: orthophosphate, pyrophosphate and polyphosphates; B: orthophosphate and polyphosphates; C: orthophosphate and pyrophosphate; D: orthophosphate; E: polyphosphates; F: pyrophosphate.

Supplementary Fig. S4