Electronic Supporting Information (ESI)

Facile One-Step and High-Yield Synthesis of Few-Layered and Hierarchically Porous Boron Nitride Nanosheets

Mingtao Zheng, *^{ab} Hanwu Dong,^a Yong Xiao,^a Shuting Liu,^b Hang Hu,^a Yeru Liang,^a

Luyi Sun*b and Yingliang Liu*

^a Department of Materials and Engineering, College of Materials and Energy, South

China Agricultural University, Guangzhou 510642, China.

^b Department of Chemical & Biomolecular Engineering and Polymer Program,

Institute of Materials Science, University of Connecticut, Storrs, Connecticut 06269,

United States

1. XRD of CaB₆ crystals

Fig. S1 shows the XRD pattern of the commercial CaB₆ crystals that was used as the starting material to synthesize BNNSs. The ten peaks at *d*-spacings of 4.153, 2.932, 2.392, 2.071, 1.854, 1.690, 1.462, 1.385, 1.308, and 1.247 Å can be indexed as cubic phase CaB₆ ((100), (110), (111), (200), (210), (211), (220), (221), (310), and (311)). The lattice constant a = 4.141 Å, in good agreement with a = 4.145 Å in JCPDS card no. 89-4304 (space group Pm-3m, no. 221). No impurities were observed in the XRD pattern. Inset in Fig. S1 reveals the multilayered structures of the CaB₆ crystals.

Fig. S1 XRD pattern of commercial CaB6 crystals employed as boron precursor in the present work.

2. Chemical composition of the few-layered BNNSs

Fig. S2a is the corresponding energy dispersive X-ray spectrum (EDS) of the sample in Fig.1, which was also prepared by nitriding the CaB₆ at 600°C for 24 hours with the CaB₆:NH₄Cl molar ratio of 1:12. In the EDS spectrum, boron and nitrogen signals exist, and have a B:N molar ratio of 1.05:1, approximately equal to that of boron nitride, indicating the product was BN. Slightly rich boron may be resulted from surface hydrolysis during purification which could result a small amount loss of nitrogen. The additional signals of carbon, copper and oxygen are mainly due to the sample grid (copper grids coated with carbon film) used in the transmission electron microscopy. K-edges characteristic of boron and nitrogen can be observed (Fig. S2b) in the EELS spectrum with peaks at about 190, and 400 eV, respectively. The π^* peak on the left side of the B-K and N-K edges and the shapes of the σ^* bands on the right side are typical of the sp²-bonded layered BN. The XPS survey of the BNNSs-600-24 sample is shown in Fig. S3. The calculated atomic content was 34.76 and 33.92 at% for B and N, respectively. Carbon and oxygen were also detected with 30.93, and 0.39 at %, respectively. XPS results of the BNNSs sample lead to a B/N ratio of 1.02:1 with an error of about 0.05 at %.

Fig. S2 EDS (a) and EELS (b) spectra of the as-prepared BNNSs-600-24 sample.

Fig. S3 The XPS survey of the BNNSs-600-24 sample.

3. Porosity and H₂ uptakes of the as-resulted BNNSs

BET	Micropor	Total pore	Micropor	Meso + macro	H. untake
SSA	e area	volume	e volume	pore volume	(+ 0/)d
$(m^2 g^{-1})^a$	$(m^2 g^{-1})$	$(cm^3 g^{-1})^b$	$(cm^3 g^{-1})$	$(cm^3 g^{-1})^c$	(wt %) ^u
492	367	0.33	0.16	0.17	1.48
561	438	0.34	0.18	0.16	1.75
795	644	0.50	0.27	0.23	2.18
745	460	0.47	0.19	0.28	1.80
	BET SSA (m ² g ⁻¹) ^a 492 561 795 745	BET Micropor SSA e area (m ² g ⁻¹) ^a (m ² g ⁻¹) 492 367 561 438 795 644 745 460	BET Micropor Total pore SSA e area volume (m ² g ⁻¹) ^a (m ² g ⁻¹) (cm ³ g ⁻¹) ^b 492 367 0.33 561 438 0.34 795 644 0.50 745 460 0.47	BET Micropor Total pore Micropor SSA e area volume e volume (m ² g ⁻¹) ^a (m ² g ⁻¹) (cm ³ g ⁻¹) ^b (cm ³ g ⁻¹) 492 367 0.33 0.16 561 438 0.34 0.18 795 644 0.50 0.27 745 460 0.47 0.19	BETMicroporTotal poreMicroporMeso + macroSSAe areavolumee volumepore volume $(m^2 g^{-1})^a$ $(m^2 g^{-1})$ $(cm^3 g^{-1})^b$ $(cm^3 g^{-1})$ $(cm^3 g^{-1})^c$ 4923670.330.160.175614380.340.180.167956440.500.270.237454600.470.190.28

Table S1 Textural characteristics and H₂ uptakes of the BNNS samples

^a The total pore volume is calculated at a relative pressure of 0.99.

^b The micropore volume and width are calculated by NLDFT method applied to nitrogen adsorption isotherm.

^c Meso- and macropore volumes are evaluated by subtracting the micropore volume from the total pore volume.

 d H₂ uptake capacities are measured volumetrically at 77 K and 1.0 MPa.