Supporting Information

Reactions of dinuclear Ni_2 complexes $[Ni(RN_{Py}S_4)]_2$ $(RN_{Py}S_4 = 2,6-bis(2-mercaptophenylthiomethyl-4-R-pyridine)$ with $Fe(CO)_3(BDA)$ (BDA = benzylidene acetone) leading to heterodinuclear NiFe and mononuclear Fe complexes related to the active sites of [NiFe]- and [Fe]-hydrogenases

Li-Cheng Song,* Yu Lu, Meng Cao, and Xi-Yue Yang

Department of Chemistry, State Key Laboratory of Elemento-Organic Chemistry, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Nankai University, Tianjin 300071, China

Contents:

- I. Preparation of new starting material 2,6-bis[(tosyloxy)methyl]-4methylthiopyridine and its precursor 2,6-bis(hydroxymethyl)-4methylthiopyridine
 - (1) Preparation of 2,6-bis(hydroxymethyl)-4-methylthiopyridine
 - (2) Preparation of 2,6-bis[(tosyloxy)methyl]-4-methylthiopyridine
- II. The expected effective magnetic moment for 1a, 1e, 1f, and 1g.
- III. Molecular structure of Lubitz compound
- IV. Molecular structure of 3g (Fig. S1)
- V. In situ IR spectra for conversion of the isolated 2e into 3e (Fig. S2) and in situ IR spectra of the isolated 3e (Fig. S3)
- VI. Thermal decomposition experiment of 2e to give 3e
- VII. ¹H NMR and IR spectra of 2b-2g (Figs. S4-S15)

I. Preparation of new starting material 2,6-bis[(tosyloxy)methyl]-4methylthiopyridine and its precursor 2,6-bis(hydroxymethyl)-4methylthiopyridine

(1) Preparation of 2,6-bis(hydroxymethyl)-4-methylthiopyridine

This new precursor was prepared from the previously reported compound 2,6bis(hydroxymethyl)-4-bromopyridine (J. Kupai, P. Huszthy, K. Székely, T. Tóth and L. Párkányi, ARKIVOC, 2011 (ix), 77-93). A mixture consisting of 2,6bis(hydroxymethyl)-4-bromopyridine (2.18 g, 10 mmol), 15% aqueous solution of sodium thiomethoxide (7 mL, 15 mmol) and 50 mL of ethanol was stirred at reflux for 12 h. After cooling to room temperature, the volatiles were removed at reduced pressure to leave a viscous yellow residue. To this residue were added ethyl acetate (20 mL) and water (20 mL), and then the aqueous phase was separated from organic phase. After the aqueous phase was extracted with ethyl acetate (20 mL×5), the extracts were combined with the above separated organic phase, dried over anhydrous MgSO₄, filtered, and evaporated to give 2,6-bis(hydroxymethyl)-4-methylthiopyridine (1.60 g, 86%) as a light-yellow solid, mp 94–96 °C. Anal. Calcd for $C_8H_{11}NO_2S$: C, 51.87; H, 5.99; N, 7.56. Found: C, 51.74; H, 5.71; N, 7.33. IR (KBr disk): 3360 (vs), 2956 (vs), 1633 (s), 1553 (s), 1057 (s) cm⁻¹. ¹H NMR (400 MHz, CDCl₃): 2.50 (s, 3H, CH₃), 2.89 (br.s, 2H, 2OH), 4.71 (s, 4H, 2CH₂), 7.00 (s, 2H, C_5H_2N), ppm. ¹³C{¹H} NMR (100 MHz, CDCl₃): 14.0 (CH₃), 64.5 (CH₂), 115.5, 152.8, 158.3 (C₅H₂N) ppm. MS (ESI, CH₂Cl₂): m/z 186.1 [M⁺].

(2) Preparation of 2,6-bis[(tosyloxy)methyl]-4-methythiopyridine

This new starting material was prepared from the above-prepared precursor by using a reported procedure with some modifications (J. Kupai, P. Huszthy, K. Székely, T. Tóth and L. Párkányi, ARKIVOC, 2011 (ix), 77-93). To a stirred mixture consisting of 2,6-bis(hydroxymethyl)-4-methylthiopyridine (1.85 g, 10 mmol), CH₂Cl₂ (60 mL), and 40 % aqueous KOH solution (60 mL) was added tosyl chloride (3.81 g, 20 mmol). The mixture was stirred at 0 °C for 1 h and at room temperature for about 4 h until the fluorescence TLC analysis showed that the starting material 2,6-bis(hydroxymethyl)-4-methylthiopyridine was completely consumed. After water (60 mL) was added, the resulting mixture was extracted with CH₂Cl₂ (60 mL×3) and then the combined organic phase was dried over anhydrous MgSO₄. After removal of the drying agent and volatiles, the residue was recrystallyzed from CH₂Cl₂/hexane to give 2,6bis[(tosyloxy)methyl]-4-methylthiopyridine (4.11 g, 83%) as a white solid, mp 96–98°C. Anal. Calcd for C₂₂H₂₃NO₆S₃: C, 53.53; H, 4.70; N, 2.84. Found: C, 53.35; H, 4.75; N, 2.70. IR (KBr disk): 2869 (w), 1588 (s), 1364 (s), 1176 (vs), 814 (s), 667 (s) cm⁻¹. ¹H NMR (400 MHz, CDCl₃): 2.43 (s, 9H, SCH₃, 2C₆H₄CH₃), 4.98 (s, 4H, $2CH_2$, 7.03 (s, 2H, C₅H₂N), 7.31 (d, J = 7.6 Hz, 4H of $2C_6H_4$), 7.77 (d, J = 7.6 Hz, 4H of $2C_6H_4$) ppm. ¹³C{¹H} NMR (100 MHz, CDCl₃): 13.9 (CH₃), 21.8 (C₆H₄CH₃), 71.4 (CH₂), 117.2, 128.2, 130.1, 132.8, 145.4, 153.1, 153.4 (C₆H₄, C₅H₂N) ppm. MS (ESI, CH₂Cl₂): m/z 494.1 [M⁺].

II. The expected effective magnetic moment for 1a, 1e, 1f, and 1g.

Since **1a**, **1e**, **1f**, and **1g** are octahedral Ni(II) complexes, their expected μ_{eff} value can be calculated as 2.83 μ_{B} according to the formula $\mu_{eff} = \sqrt{n(n+2)} \mu_{B}$, where n = 2 (namely two unpaired electrons). [J. C. Bailar, H. J. Emelèus, S. R. Nyholm and A. F. Trotman-Dickenson, *Comprehensive Inorganic Chemistry*, Pergamon: Oxford, U.K., Vol. 3, 1973]

III. Molecular structure of Lubitz compound

IV. Molecular structure of 3g

Fig. S1 Molecular structure of 3g with 30%_probability level ellipsoids.

V. In situ IR spectra for conversion of the isolated 2e into 3e and in situ IR spectra of the isolated 3e

Fig. S2 In situ IR spectra for conversion of the isolated 2e into 3e in THF at room temperature.

Fig. S3 In situ IR spectra of the isolated 3e in THF at room temperature.

VI. Thermal decomposition experiment of 2e to give 3e

A 50 mL three-necked flask equipped with a magnetic stir-bar, two serum caps, and a N₂ inlet tube was charged with **2e** (0.100 g, 0.16 mmol) and THF (10 mL). The brown red solution was stirred at 25°C for 6 h to give a red solution. After solvent was removed at reduced pressure, the residue was subjected to flash column chromatography. Elution with CH₂Cl₂/acetone (v/v = 40:1) developed a red band, from which **3e** (0.067 g, 81%) was obtained as a red solid.

Fig. S4. ¹H NMR spectrum of 2b

Fig. S5. IR spectrum of 2b

Fig. S7 IR spectrum of 2c

Fig. S9 IR spectrum of 2d

Fig. S11 IR spectrum of 2e

Fig. S12 ¹H NMR spectrum of 2f

Fig. S13 IR spectrum of 2f

Fig. S14 ¹H NMR spectrum of 2g

Fig. S15 IR spectrum of 2g