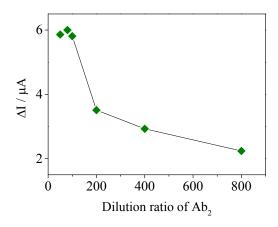
Electronic Supplementary Material (ESI) for RSC Advances. This journal is © The Royal Society of Chemistry 2016


Construction of portable electrochemical immunosensor based on the graphene hydrogel@polydopamine for microcystin-LR detection by using multi-mesoporous carbon spheres-enzyme label

Cuifen Gan^a, Zihong Sun^a, Li Ling^b, Zuyu He^a, Hongtao Lei^b, Yingju Liu^{a,*}

^a Department of Applied Chemistry, College of Materials & Energy, South China Agricultural University, Guangzhou 510642, China

^b The Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, Guangzhou 510642, China

^{*} To whom correspondence should be addressed. E-mail: liuyingju@hotmail.com. Tel: 86-20-85280319; Fax: 86-20-85282366

Fig. S1 Effect of the dilution ratio of Ab₂.

Estimation of detection limit

According to the international union of pure and applied chemistry (IUPAC) (Fassel. 1978), the limit of detection (LOD), expressed as the concentration, c_L , is derived from the value calculated by the calibration plot obtained from a given analytical procedure where $x_L = x_{b1} + 3s_{b1}$, where x_L is the smallest measure, x_{b1} is the mean signal of the blank measures and s_{b1} is the standard deviation of the blank measures. In this work, after making twelve measurements of blank, the x_{b1} = 23.33 and s_{b1} = 0.12 was obtained. Therefore, $x_L = x_{b1} + 3s_{b1} = 23.33 + 3 \times 0.12 = 23.69$. The calibration plot of this proposed immunosensor is $\Delta I = 8.21 - 7.69 \times IgC_{MC-LR}$. Therefore, the $c_L = 10^{(\Delta I - 8.21)/(-7.69)} = 10^{(23.69 - 8.21)/(-7.69)} = 0.0097 \,\mu g/L = 9.7 \,ng/L$ (Ren et al. 2015), where ΔI is the x_L at 23.69. In conclusion, the LOD of this proposed immunosensor for the detection of MC-LR is 9.7 ng/L.

References

V. A. Fassel, Nomenclature, symbols, units and their usage in spectrochemical analysis-II. data interpretation analytical chemistry division, Spectrochim. Acta Part B: At. Spectrosc. 33 (1978) 241. K. Ren, J. Wu, F. Yan, Y. Zhang, H. Ju, Immunoreaction-triggered DNA assembly for one-step sensitive ratiometric electrochemical biosensing of protein biomarker, Biosens. Bioelectron. 66 (2015) 345.

Table S1 Comparison with other reported analysis method of MC-LR

mour range Becomen mine reci.	Method	Linear range	Detection limit	Ref.
-------------------------------	--------	--------------	-----------------	------

	(μg/L)	(μg/L)	
Phosphatase inhibition assay	0.4-10	0.2	[1]
LC-MS	0.01-2.5 μg/g	$0.005~\mu g/g$	[2]
ELISA	0.3-10	0.1	[3]
Apatmer sensor	0.05-100 a(1.0×10 ⁻⁷ -5.0×10 ⁻¹¹ mol/L)	0.018 a (1.8×10 ⁻¹¹ mol/L)	[4]
Label-free immunosensor	0.05-15	0.02 ^a (20 ng/L)	[5]
Graphene immunosensor	0.05-15	0.016	[6]
Fluorescence immunosensor	0.02-16 a (0.02-16 ng/mL)	0.007 a (0.007 ng/mL)	[7]
Electrochemical immunosensor	0.05-20	0.03	[8]
Immunosensor	0.01-10	0.0097	This work

^a the data is from the original work.

References:

- [1] C. Rivasseau, P. Racaud, A. Deguin, M.C. Hennion, Development of a bioanalytical phosphatase inhibition test for the monitoring of microcystins in environmental water samples, Anal. Chim. Acta 394 (1999) 243.
- [2] X. Guo, P. Xie, J. Chen, X. Tuo, X. Deng, S. Li, D. Yu, C. Zheng, Simultaneous quantitative determination of microcystin-LR and its glutathione metabolites in rat liver by liquid chromatography-tandem mass spectrometry, J. Chromatogra. B 963 (2014) 54.
- [3] J. Sheng, M. He, H. Shi, A highly specific immunoassay for microcystin-LR detection based on a monoclonal antibody, Anal. Chim. Acta 603 (2007) 111.
- [4] Z. Lin, H. Huang, Y. Xu, X. Gao, B. Qiu, X. Chen, G. Chen, Determination of microcystin-LR in water by a label-free aptamer based electrochemical impedance biosensor, Talanta 103 (2013) 371
- [5] P. Tong, S. Tang, Y. He, Y. Shao, L. Zhang, G. Chen. Label-free immunosensing of microcystin-LR using a gold electrode modified with gold nanoparticle, Microchim. Acta, 173 (2011) 299.
- [6] H. Zhao, J. Tian, X. Quan. A graphene and multienzyme functionalized carbon nanosphere-based electrochemical immunosensor for microcystin-LR detection, Colloids Surf. B: Biointerf. 103 (2013) 38.
- [7] Y. Li, J. Sun, L. Wu, J. Ji, X. Sun, Y. Qian. Surface-enhanced fluorescence immunosensor using Au nano-crosses for the detection of microcystin-LR. Biosens. Bioelectron. 62 (2014) 255.

[8] J. Zhang, J. Lei, C. Xu, L. Ding, H. Ju. Carbon nanohorn sensitized electrochemical immunosensor for rapid detection of microcystin-LR. Anal. Chem. 82 (2010) 1117.