The effect of copper species in copper-ceria catalysts: structure

evolution and enhanced performance in CO oxidation

Wenshuang Zhu,^a Ke Tang,^a Jing Li,^a Wei Liu,^a Xiaoran Niu,^a Genyuan Zhao,^a Xueqin Ma,^a Zhaohui Liu,^b Huiying Wei^{*, a} and Yanzhao Yang^{*, a}

^aKey Laboratory for Special Functional Aggregate Materials of Education Ministry, School of Chemistry and Chemical Engineering, Shandong University, Jinan, 250100, P. R. China.

^bShandong Academy of Agricultural Science, Jinan, 250100, P. R. China.

**Corresponding Author: E-mail: yzhyang@sdu.edu.cn; Fax: +86-531-88564464; Tel:+86-531-88362988*

samples	primary particle size (nm)
P1	6.2
P2	5.3
Р3	5.7
P4	5.8
Р5	4.6
P6	5.5

Table S1 Primary particle size of P1-P6 calculated by Scherrer equation.

Table S2 N_2 adsorption-desorption characterization and the compositional data of the as prepared carbon spheres and precursors of P_1 and P_4 samples

samples —	Nominal ratio	S _{BET}	D _{BJH}	$V_{\rm BJH}$
	Cu/Ce+Cu, % _{mol}	m ² g ⁻¹	nm	cm ³ g ⁻¹
carbon spheres		13.68	4.2	0.022
precursors of P ₁	0	18.79	3.4	0.039
precursors of P ₄	2.5	22.41	3.8	0.045

Fig. S1 N₂ adsorption-desorption isotherms of the pure and Cu^{2+} doped CeO₂ (a) and the corresponding BJH pore size distribution curves (b)

Fig. S2 EDS results of the pure and Cu^{2+} doped CeO_2 : (a) P_1 , (b) P_2 , (c) P_3 , (d) P_4 , (e) P_5 and (f) P_6 .

samples	Cu/Cu+Ce
	‰ _{mol}
P ₂	3.22
P ₃	8.30
P_4	14.07
P ₅	21.77
P_6	31.80

Table. S3 AES-ICP data of P₂-P₆

Fig. S3 The SEM images of precursors of P_1 samples (a), P_1 (b), precursors of P_4 samples (c) and P_4 (d)

Fig. S4 The STEM images of precursors of P_1 samples (a) and P_1 (b); EDS-mapping image of an individual nanosphere, which is marked in Fig. D (b).

Fig. S5 The TEM images of the carbon nanospheres

Fig. S6 The TEM images of the Cu2+ doped CeO2 (a-d): P2,P3, P5 and P6.

Fig. S7 TEM images of P1 (A1-A4) and P5 (B1-B4) with a series of calcination temperature and time. (A1: 280 °C, 10 min; A2: 300 °C, 10 min; A3: 320 °C, 10 min; A4: 320 °C, 50 min; B1 260 °C, 10 min; B2: 280 °C, 10 min; B3: 280 °C, 50 min; B4: 320 °C, 10 min)

Fig. S8 The XRD patterns of P1 (a) and P5 (b) with a series of calcination temperature and time

Fig S9 Catalytic performance of $P_5(a)$ and $P_6(b)$ in different runs