Supporting Information

A Highly Active and Recyclable Homogeneous NHC-Palladium Catalyst with pH- and Light-Sensitive Tags for the SuzukiMiyaura Coupling Reactions of Aryl Halides with Arylboronic

 AcidsGuiyan Liu, *a Chengxin Liu ${ }^{a}$, Xia Zhao ${ }^{a}$ and Jianhui Wang*b
${ }^{a}$ Tianjin Key Laboratory of Structure and Performance for Functional Molecules; Key Laboratory of Inorganic-Organic hybrid Functional Material Chemistry, Ministry of Education; College of Chemistry, Tianjin Normal University, Tianjin, 300387, P. R. China. E-mail: guiyanliu2013@163.com.
${ }^{b}$ Department of Chemistry, School of Science, Tianjin University, Tianjin 300072, PR China

Content:

1. General Techniques 3
1.1. Materials 3
1.2. Spectroscopic Procedures 3
1.3 Synthetic Procedures 3
2. Preparation of $\mathbf{1}$ 3
3. Preparation of $\mathbf{2}$ 4
4. Preparation of $\mathbf{3}$ 4
5. Preparation of 4 5
6. Preparation of 5 5
7. Preparation of Catalyst 6 6
8. Characterization of Complex $\mathbf{8}$ 7
9. Absorption Spectra of Complexes 6,7 and $\mathbf{8}$ 10
10. Optimization of the Reaction Conditions 11
11. Photo of Homogeneous catalyst system for Suzuki-Miyaura coupling reactions of aryl halides with arylboronic acids 11
12. General Procedure for NHC-Pd(II) Catalyzed Suzuki-Miyaura Coupling Reaction of Aryl halides with Arylboronic acids 12
13. General Procedure for Recycling the NHC-Pd(II) Catalyst 12
14. Characterization Data of the Products in Table 2 and Table 3 13
15. NMR Spectra and HRMS Spectra of Compounds 15

1. General Techniques

1.1. Materials

Unless otherwise noted, all reactions were performed under an atmosphere of dry N_{2} with ovendried glassware and anhydrous solvents. Toluene, THF, hexane, and diethyl ether were distilled from sodium benzophenone under a N_{2} atmosphere. $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ was dried over CaCl_{2}, and distilled prior to use. All other solvents were dried over 4-8 \AA mesh molecular sieves (Aldrich). Reactions were monitored by thin layer chromatography on 0.20 mm Anhui Liangchen silica gel plates and spots were detected with UV light. Silica gel (200-300 mesh) (from Anhui Liang Chenchem Company, Ltd.) was used for flash chromatography. The $\left(\mathrm{Pd}(\mathrm{allyl}) \mathrm{Cl}_{2}{ }_{2}{ }^{1}\right.$ and nitrobenzospiropyran $(\mathrm{SP}){ }^{2}$ were prepared according to literature method. Other chemicals or reagents were obtained from commercial sources.

1.2. Spectroscopic Procedures

NMR spectra were recorded with a Bruker Avance III 400 MHz spectrometer. UV-vis spectra were recorded with a SHIMADZU UV-2700 spectrophotometer at $20^{\circ} \mathrm{C}$. Elemental analyses were determined in house using a Perkin-Elmer 2400 CHN elemental analyzer.

1.3. Synthetic Procedures

All experiments were carried out in Synthware glass round-bottom flasks, equipped with magnetic stir bars and high vacuum Teflon valves.

2. Preparation of 1

A $250-\mathrm{mL}$ flask was charged with $3.73 \mathrm{~mL} 40 \%$ aqueous glyoxal and 50 mL methanol. Then 4-bromo-2,6-dimethyl phenylamine ($13.5 \mathrm{~g}, 67 \mathrm{mmol}$) in 50 mL methanol was added dropwise at room temperature. After the mixture was stirred for 12 h at room temperature, the resulting yellow precipitate was collected by filtration and dried in vacuum.

A suspension of the resulting yellow precipitate ($5.5 \mathrm{~g}, 13 \mathrm{mmol}$) in THF/methanol ($40 \mathrm{~mL} / 60 \mathrm{~mL}$) was stirred at room temperature in a $250-\mathrm{mL}$ round bottom flask equipped with a stir bar. Then sodium borohydride ($7 \mathrm{~g}, 184 \mathrm{mmol}$) was slowly added. The mixture was refluxed for 1.5 h . After cooling to room temperature, saturated ammonium chloride aqueous solution (20 mL) was added.

The mixture was filtered and the filtrate was extracted with ether ($3 \times 20 \mathrm{~mL}$), washed with water, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated under vacuum to afford a pink solid. Yield: 69%. ${ }^{1} \mathrm{H}$-NMR (400 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta(\mathrm{ppm}): 7.05(\mathrm{~s}, 4 \mathrm{H}), 3.07(\mathrm{~s}, 4 \mathrm{H}), 2.19(\mathrm{~s}, 12 \mathrm{H}) .{ }^{13} \mathrm{C}-\mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ (ppm): 144.7, 131.7, 131.4, 114.6, 48.7, 18.3. Analytical Data. Calcd (found) for $\mathrm{C}_{18} \mathrm{H}_{22} \mathrm{~N}_{2} \mathrm{Br}_{2}$: C, 50.73 (50.86); H, 5.20 (4.98).

3. Preparation of 2

Under a N_{2} atmosphere, a $50-\mathrm{mL}$ flask was charged with compound 1 ($1 \mathrm{~g}, 2.3 \mathrm{mmol}$), ethyl acrylate ($1.9 \mathrm{~g}, \quad 18.8 \mathrm{mmol})$, trimethylamine (TEA) ($1.9 \mathrm{~g}, 18.8 \mathrm{mmol}$), tetrakis-(triphenylphosphine)-palladium $(0.27 \mathrm{~g}, 0.23 \mathrm{mmol})$ and toluene $(2 \mathrm{~mL})$. The mixture was heated to $100^{\circ} \mathrm{C}$ for 36 h . After cooling to room temperature, a quantity of water was added. The mixture was filtered and the filtrate was extracted with ether ($3 \times 20 \mathrm{~mL}$), washed with water, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated under vacuum to afford a yellow solid. The product was further purified by flash chromatography on a silica gel column using pentanes/ethyl acetate (3:1) as the eluent .Yield: 70\%. ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta(\mathrm{ppm}): 7.57(\mathrm{~d}, J=16.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.18(\mathrm{~s}, 4 \mathrm{H}), 6.29(\mathrm{~d}, J=16.0 \mathrm{~Hz}$, $2 \mathrm{H}), 4.23(\mathrm{q}, J=7.2 \mathrm{~Hz}, 4 \mathrm{H}), 3.29(\mathrm{~s}, 4 \mathrm{H}), 2.28(\mathrm{~s}, 12 \mathrm{H}), 1.32(\mathrm{~s}, 6 \mathrm{H}) .{ }^{13} \mathrm{C}-\mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ $\delta(\mathrm{ppm}): 166.9,147.5,144.0,128.6,128.1,127.3,114.9,59.7,47.9,18.3,13.8$. Analytical Data. Calcd (found) for $\mathrm{C}_{29} \mathrm{H}_{40} \mathrm{~N}_{2} \mathrm{O}_{4}$: C, 72.47 (72.34); $\mathrm{H}, 8.39$ (8.27).

4. Preparation of 3

A suspension of $2(200 \mathrm{mg}, 0.4 \mathrm{mmol})$ in $10 \% \mathrm{NaOH}(8 \mathrm{~mL})$ and methanol $(24 \mathrm{~mL})$ was refluxed in a $100-\mathrm{mL}$ round bottom flask for 1.5 h . After cooling to room temperature, the pH of the mixture was adjusted to 1.0 with 1 M HCl and then extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 20 \mathrm{~mL})$. The organic layer was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated in vacuum to give the resulting yellow solid. Yield: $90 \%{ }^{1} \mathrm{H}-\mathrm{NMR}(400 \mathrm{MHz}, \mathrm{DMSO}) \delta(\mathrm{ppm}): 7.41$ (d, $\left.J=16.0 \mathrm{~Hz}, 2 \mathrm{H}\right), 7.23(\mathrm{~s}, 4 \mathrm{H}), 6.26(\mathrm{~d}, J=16.0$ $\mathrm{Hz}, 2 \mathrm{H}$), 3.33 ($\mathrm{s}, 4 \mathrm{H}$), $2.20(\mathrm{~s}, 12 \mathrm{H}) .{ }^{13} \mathrm{C}-\mathrm{NMR}(100 \mathrm{MHz}, \mathrm{DMSO}) \delta(\mathrm{ppm}): 167.9,148.7,144.3$,
129.0, 127.8, 125.9, 115.1, 47.5, 18.7. Analytical Data. Calcd (found) for $\mathrm{C}_{24} \mathrm{H}_{28} \mathrm{~N}_{2} \mathrm{O}_{4}$: C, 70.57 (70.66); H, 6.91 (6.97).

5. Preparation of 4

DCC (N,N'-dicyclohexylcarbodiimide) ($0.206 \mathrm{~g}, 1 \mathrm{mmol}$) and DMAP (4-dimethylaminopyridine) $(0.25 \mathrm{~g}, 0.2 \mathrm{mmol})$ were added to a solution of $3(0.20 \mathrm{~g}, 0.5 \mathrm{mmol})$ and $(\mathrm{R} / \mathrm{S})$-SP $(0.35 \mathrm{~g}, 1 \mathrm{mmol})$ in 5 mL anhydrous $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ at $0{ }^{\circ} \mathrm{C}$. The reaction mixture was then slowly warmed to room temperature and stirred for another 12 h at room temperature. Then the insoluble materials were filtered out and the filtrate was concentrated under vacuum. The crude product was purified by flash column chromatography on silica using $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ as the eluent to give green product $\mathbf{4}$ as a solid. Yield: $60 \%{ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta(\mathrm{ppm}): 8.00(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 4 \mathrm{H}), 7.51(\mathrm{~d}, J=16.0 \mathrm{~Hz}$, $2 \mathrm{H}), 7.22(\mathrm{t}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.11-7.08(\mathrm{~m}, 6 \mathrm{H}), 6.92-6.88(\mathrm{~m}, 4 \mathrm{H}), 6.71(\mathrm{t}, J=8.0 \mathrm{~Hz}, 4 \mathrm{H}), 6.14(\mathrm{~d}$, $J=16.0 \mathrm{~Hz}, 2 \mathrm{H}), 5.88(\mathrm{~d}, J=10.4 \mathrm{~Hz}, 2 \mathrm{H}), 4.33(\mathrm{t}, J=5.6 \mathrm{~Hz}, 4 \mathrm{H}), 3.62-3.55(\mathrm{~m}, 4 \mathrm{H}), 3.30(\mathrm{~s}, 4 \mathrm{H})$, $2.29(\mathrm{~s}, 12 \mathrm{H}), 1.28(\mathrm{~s}, 6 \mathrm{H}), 1.17(\mathrm{~s}, 6 \mathrm{H}) .{ }^{13} \mathrm{C}-\mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta(\mathrm{ppm}): 166.3,158.7,147.7$, $145.9,144.6,140.3,135.0,128.4,127.8,127.5,127.1,126.5,125.1,121.9,121.0,119.1,117.7$, 114.8, 113.6, 106.0, 105.7, 61.5, 52.6, 52.1, 47.6, 41.8, 25.1, 19.1, 18.1. Analytical Data. Calcd (found) for $\mathrm{C}_{64} \mathrm{H}_{64} \mathrm{~N}_{6} \mathrm{O}_{10}$: C, 71.36 (73.97); H, 5.99 (6.25).

6. Preparation of 5

First 4 ($220 \mathrm{mg}, 0.2 \mathrm{mmol}$) and 2,3,4,5,6-pentafluorobenzaldehyde ($78 \mathrm{mg}, 0.4 \mathrm{mmol}$) were dissolved in $2 \mathrm{~mL} \mathrm{CH}_{2} \mathrm{Cl}_{2}$. Then, 0.5 mL acetic acid was added and the mixture was stirred for 3 h at $30^{\circ} \mathrm{C}$. The solution was then extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 20 \mathrm{~mL})$, washed with water, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated under vacuum. The crude product was purified by flash chromatography on a silica gel column using pentanes $/ \mathrm{CH}_{2} \mathrm{Cl}_{2}(1: 1)$ as the eluent to give pure product 5 as a blue solid. Yield: 37%. ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{CN}\right) \delta(\mathrm{ppm}): 8.04-8.02(\mathrm{~m}, 2 \mathrm{H}), 7.96-7.90(\mathrm{~m}, 2 \mathrm{H}), 7.41$ (d, J $=3.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.21-7.17(\mathrm{~m}, 7 \mathrm{H}), 7.13(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.08-7.04(\mathrm{~m}, 2 \mathrm{H}), 6.87(\mathrm{t}, J=7.2 \mathrm{~Hz}$, 2H), 6.74-6.67 (m, 4H), 6.19 (dd, $J=6.0 \mathrm{~Hz}, J=16.0 \mathrm{~Hz}, 2 \mathrm{H}$), 5.97 (d, $J=10.4 \mathrm{~Hz}, 2 \mathrm{H}$), 4.36-4.27 $(\mathrm{m}, 4 \mathrm{H}), 3.65-3.50(\mathrm{~m}, 8 \mathrm{H}), 2.39(\mathrm{~s}, 12 \mathrm{H}), 1.25(\mathrm{~s}, 6 \mathrm{H}), 1.11(\mathrm{~s}, 6 \mathrm{H}) .{ }^{19} \mathrm{~F}-\mathrm{NMR}\left(376 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{CN}\right)$ $\delta(\mathrm{ppm}):-137.83(\mathrm{~s}, 1 \mathrm{~F}),-150.59(\mathrm{~d}, J=15 \mathrm{~Hz}, 1 \mathrm{~F}),-156.85(\mathrm{~d}, J=19.6 \mathrm{~Hz}, 1 \mathrm{~F}),-164.24(\mathrm{~d}, J=5.2$ $\mathrm{Hz}, 1 \mathrm{~F}$), 164.86 (d, $J=1.8 \mathrm{~Hz}, 1 \mathrm{~F}$). Analytical Data. Calcd (found) for $\mathrm{C}_{71} \mathrm{H}_{63} \mathrm{~F}_{5} \mathrm{~N}_{6} \mathrm{O}_{10}: \mathrm{C}, 67.93$ (69.86); H, 5.06 (5.13).

7. Preparation of Catalyst 6

A suspension of $(\mathrm{Pd}(\mathrm{allyl}) \mathrm{Cl})_{2}(0.04 \mathrm{mg}, 0.03 \mathrm{mmol})$ and $5(0.022 \mathrm{mg}, 0.06 \mathrm{mmol})$ in toluene $(1$ mL) was heated at $80^{\circ} \mathrm{C}$ for 1.5 h under a N_{2} atmosphere. After cooling to room temperature, petroleum ether was added. The mixture was filtered and the resulting solid was washed with petroleum ether. The product was dried under vacuum to give 6 as a light blue solid. Yield: 95%. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta(\mathrm{ppm})$: 7.99-7.97 (m, 4H), 7.61-7.48 (m, 2H), 7.28-7.19 (m, 6H), 7.09 (d, $J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 6.94-6.89(\mathrm{~m}, 4 \mathrm{H}), 6.75-6.69(\mathrm{~m}, 4 \mathrm{H}), 6.41(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.22(\mathrm{~d}, J=8.0 \mathrm{~Hz}$, $2 \mathrm{H}), 5.89(\mathrm{~d}, J=10.4 \mathrm{~Hz}, 2 \mathrm{H}), 4.38-4.23(\mathrm{~m}, 4 \mathrm{H}), 3.88(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.65-3.45(\mathrm{~m}, 4 \mathrm{H}), 3.19-$
$3.13(\mathrm{~m}, 4 \mathrm{H}), 3.03(\mathrm{~d}, J=12.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.70(\mathrm{~d}, J=13.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.49(\mathrm{~s}, 12 \mathrm{H}), 1.81(\mathrm{~d}, J=12.0$ $\mathrm{Hz}, 1 \mathrm{H}), 1.28(\mathrm{~s}, 6 \mathrm{H}), 1.17(\mathrm{~s}, 6 \mathrm{H}) .{ }^{13} \mathrm{C}-\mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta(\mathrm{ppm}): 211.4,166.7,166.4$, $159.4,146.5,144.3,143.5,141.0,140.0,139.8,137.2,135.7,134.5,131.1,128.4,127.8,125.9$, $122.7,121.8,121.8,119.9,119.1,118.5,118.2,115.6,114.4,106.6,106.4,72.7,62.6,60.5,52.9$, 51.0, 46.0, 42.4, 29.6, 25.8, 19.8, 18.8. Analytical Data. Calcd (found) for $\mathrm{C}_{68} \mathrm{H}_{67} \mathrm{ClN}_{6} \mathrm{O}_{10} \mathrm{Pd}$: C, 64.30 (64.66); H, 5.32 (5.87). High-resolution MS analysis (ESI) $m / z:[\mathrm{M}-\mathrm{Cl}]^{+}$calcd 1233.3953, found 1233.3958 .

8. Characterization of Complex 8

According to Ref (Org. Biomol. Chem. 2013, 11, 6047-6055.), the compound ME was converted to compound \mathbf{A} and \mathbf{B} in the presence of KOH in $i-\mathrm{PrOH} / \mathrm{H}_{2} \mathrm{O}$. We characterized them by ${ }^{1} \mathrm{H}$ NMR and the spectra are shown as follows. Judging from the spectra (base on the chemistry shift from 6.50 to 5.00 ppm), the products are a mixture and the ratio of \mathbf{A} and \mathbf{B} is $1: 1$. By this way, we also
characterized $\mathbf{8 a} / \mathbf{8 b}$ by ${ }^{1} \mathrm{H}$ NMR and the products are also a mixture of $\mathbf{8 a}$ and $\mathbf{8 b}$. The ratio of $\mathbf{8 a}$ and $\mathbf{8 b}$ is $1: 4$.

9. Absorption Spectrum of Complex 6, 7 and 8

Catalyst $6\left(1 \times 10^{-3} \mathrm{mmol}\right)$ was dissolved in $10 \mathrm{~mL} i-\mathrm{PrOH}-\mathrm{H}_{2} \mathrm{O}(1: 1 \mathrm{v} / \mathrm{v})\left(\mathrm{C}=1.0 \times 10^{-4} \mathrm{M}\right)$. The
absorption spectrum of the resulting solution was then measured and the results are shown in Figure 1 (black line). Then, $\mathrm{KOH}\left(2 \times 10^{-3} \mathrm{mmol}\right)$ was added and the solution was shaken by hand. The absorption spectrum of the resulting solution is shown in Figure 1 (red line). Then, the pH of the above solution was adjusted to 7.0 with 1 M HCl . The absorption spectrum of that solution is shown in Figure 1 (blue line). The solution was then irradiated with light $(\lambda>380 \mathrm{~nm})$ at room temperature for 2 min . The results are shown in Figure 1 (green line).

10. Optimization of the Reaction Conditions

A mixture of phenylboronic acid (0.25 mmol), 4-bromotoluene (0.25 mmol), and base (0.5 mmol) was dissolved in different solvent $(1 \mathrm{~mL})$ and heated to $30^{\circ} \mathrm{C}$. Then catalyst $6(0.1 \mathrm{~mol} \%)$ was added and the reaction mixture was stirred for $4-12 \mathrm{~h}$. After completion of the reaction, the mixture was extracted three times with n-hexane (3 x 1 mL), dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated under vacuum. The products were further purified by flash chromatography on a silica gel column. The results are presented in Table S1.

Table S1 Optimizing reaction conditions for the reaction of 4-bromotoluene with phenylboronic acid. ${ }^{a}$

base	solvent	time	yield $(\%)^{b}$	
1	KOH	$i-\mathrm{PrOH} / \mathrm{H}_{2} \mathrm{O}(1: 1)$	4 h	99
2	KOH	$\mathrm{DMF} / \mathrm{H}_{2} \mathrm{O}(1: 1)$	12 h	0
3	KOH	$\mathrm{THF} / \mathrm{H}_{2} \mathrm{O}(1: 1)$	12 h	0
4	KOH	$\mathrm{MeOH} / \mathrm{H}_{2} \mathrm{O}(1: 1)$	12 h	60
5	KOH	$i-\mathrm{PrOH}$	12 h	0
6	KOH	DMF	12 h	0
7	KOH	THF	12 h	0
8	KOH	toluene	12 h	0
9	KOH	$\mathrm{H}_{2} \mathrm{O}$	12 h	0
10	KOH	MeOH	12 h	70
11	$\mathrm{~K}_{2} \mathrm{CO} \mathrm{O}_{3}$	$i-\mathrm{PrOH} / \mathrm{H}_{2} \mathrm{O}(1: 1)$	4 h	50

${ }^{\text {a }}$ Reactions were carried out using 4-bromotoluene (0.25 mmol , 1 equiv), $\mathrm{PhB}(\mathrm{OH})_{2}(0.25 \mathrm{mmol}, 1$ equiv), solvent (1 mL) and base ($1 \mathrm{mmol}, 2$ equiv) at $30^{\circ} \mathrm{C}$. ${ }^{\mathrm{b}}$ Isolated yields.
11. Photo of Homogeneous catalyst system for Suzuki-Miyaura coupling reactions of aryl halides with arylboronic acids.

Fig.S1 Homogeneous catalyst system for Suzuki-Miyaura coupling reactions of aryl halides with arylboronic acids.

12. General Procedure for NHC-Pd(II) Catalyzed Suzuki-Miyaura Coupling Reaction of Aryl

halides with Arylboronic acids

A mixture of arylboronic acids (0.25 mmol), aryl halides (0.25 mmol), and $\mathrm{KOH}(0.5 \mathrm{mmol})$ was dissolved in $i-\mathrm{PrOH} / \mathrm{H}_{2} \mathrm{O}(0.5 \mathrm{~mL} / 0.5 \mathrm{~mL})$ and heated to $30^{\circ} \mathrm{C}$. Then catalyst $6(0.1 \mathrm{~mol} \%)$ was added and the reaction mixture was stirred for 4 h . After completion of the reaction, the mixture was extracted three times with n-hexane (3 x 1 mL), dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated under vacuum. The products were further purified by flash chromatography on a silica gel column.

13. General Procedure for Recycling the NHC-Pd(II) Catalyst

A mixture of $\mathrm{PhB}(\mathrm{OH})_{2}(0.25 \mathrm{mmol})$, 4-bromotoluene $(0.25 \mathrm{mmol})$, and $\mathrm{KOH}(0.5 \mathrm{mmol})$ was dissolved in $i-\mathrm{PrOH} / \mathrm{H}_{2} \mathrm{O}(0.5 \mathrm{~mL} / 0.5 \mathrm{~mL})$ and heated to $30^{\circ} \mathrm{C}$. Then catalyst $6(0.5 \mathrm{~mol} \%)$ was added and the mixture was stirred. After completion of the reaction, the products were separated from the reaction mixture by adding cyclohexane $(2 \times 1 \mathrm{~mL})$ as the extraction media. Then, the pH of the solution was adjusted to 7.0 with 1 M HCl and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \times 1 \mathrm{~mL})$. The $\mathrm{CH}_{2} \mathrm{Cl}_{2}$
solution was irradiated with visible light ($\lambda>380 \mathrm{~nm}$). After the color of the purple solution disappeared, the solution was dried over magnesium sulfate, filtered and concentrated by vacuum to give the original catalyst $\mathbf{6}$, which was then used in another reaction cycle.

14. Characterization Data of the Products in Table 2 and Table 3:

4-Methyl-biphenyl (11a) ${ }^{3}:{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta(\mathrm{ppm}): 7.61-7.57(\mathrm{~m}, 2 \mathrm{H}), 7.51-7.41(\mathrm{~m}$, 4 H), 7.37-7.30 (m, 1H), 7.26-7.24 (m, 2H), $2.40(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta(\mathrm{ppm})$: $141.2,138.4,137.0,129.5,128.8,127.3,127.2,127.0,21.1$.

Biphenyl (11b): ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta(\mathrm{ppm}): 7.70-7.68(\mathrm{~m}, 4 \mathrm{H}), 7.55-7.51(\mathrm{~m}, 4 \mathrm{H}), 7.45-$ $7.42(\mathrm{~m}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta(\mathrm{ppm}): 141.3,128.8,127.7,127.2$.

4-Fluoro-biphenyl (11c) ${ }^{4}$: ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ (ppm): 7.59 ($\mathrm{d}, \mathrm{J}=8.0 \mathrm{~Hz}, 1 \mathrm{H}$), 7.55-7.52 (m, 2H), 7.46-7.41 (m, 3H), $7.34(\mathrm{t}, \mathrm{J}=7.6 \mathrm{~Hz}, 3 \mathrm{H}), 7.12(\mathrm{t}, \mathrm{J}=8.4 \mathrm{~Hz}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta(\mathrm{ppm}): 162.4(\mathrm{~d}, \mathrm{~J}=245.7 \mathrm{~Hz}, 1 \mathrm{C}), 140.3,137.3,128.8,128.7,128.6,127.2,127.0,115.6$ (d, J = 21.2 Hz, 1C).

2-Methyl-biphenyl (11d) ${ }^{5}:{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta(\mathrm{ppm}): 7.40-7.33(\mathrm{~m}, 2 \mathrm{H}), 7.32-7.26(\mathrm{~m}$, 3 H), 7.25-7.18 (m, 4H), $2.25(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta(\mathrm{ppm}): 142.0,142.0,135.3,130.3$, 129.8, 129.2, 128.1, 127.3, 126.8, 125.8, 20.5.

Biphenyl-4-carbaldehyde (11e) ${ }^{3:}{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta(\mathrm{ppm}): 10.06(\mathrm{~s}, 1 \mathrm{H}), 7.96(\mathrm{~d}, J=$ $8.4 \mathrm{~Hz}, 2 \mathrm{H}$), 7.75 (d, $J=8.0 \mathrm{~Hz}, 2 \mathrm{H}$), 7.66-7.63 (m, 2H), 7.51-7.40 (m, 3H). ${ }^{13} \mathrm{C}$ NMR (100 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta(\mathrm{ppm}): 191.9,147.1,139.7,135.2,130.2,129.0,128.5,127.6,127.3$.

2-Phenyl-pyridine (11f): ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta(\mathrm{ppm}): 8.72-8.71(\mathrm{~m}, 1 \mathrm{H}), 8.01-7.99(\mathrm{~m}$,

2 H), 7.81-7.40 (m, 2H), 7.51-7.42 (m, 3H), 7.28-7.24 (m, 1H); ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ (ppm): 157.1, 149.4, 139.1, 136.5, 128.7, 128.5, 126.7, 121.8, 120.3.

4-Nitro-biphenyl (11g) ${ }^{4}:{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta(\mathrm{ppm}): 8.32-8.28(\mathrm{~m}, 2 \mathrm{H})$, 7.76-7.72 (m, 2 H), 7.64-7.61 (m, 2H), 7.52-7.43 (m, 3H); ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta(\mathrm{ppm}): 147.6,147.0$, 138.7, 129.1, 128.9, 127.8, 127.4, 124.1

4-Methoxy-4'-methyl-biphenyl (12a) ${ }^{6}:{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta(\mathrm{ppm}): 7.51(\mathrm{~d}, \mathrm{~J}=8.8 \mathrm{~Hz}$, $2 \mathrm{H}), 7.45$ (d, $J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.23(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 6.97(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H}), 3.85(\mathrm{~s}, 3 \mathrm{H}), 2.38(\mathrm{~s}$, $3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta(\mathrm{ppm}): 158.9,138.0,136.3,133.7,129.4,127.9,126.6,114.2$, 55.3, 21.0.

4-Chloro-4'-methyl-biphenyl (12b) ${ }^{4}:{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ (ppm): 7.51-7.49 (m, 2H), 7.47$7.46(\mathrm{~m}, 2 \mathrm{H}), 7.44-7.41(\mathrm{~m}, 2 \mathrm{H}), 7.40-7.37(\mathrm{~m}, 2 \mathrm{H}), 2.39(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ (ppm): 139.6, 137.4, 137.1, 133.0, 129.6, 128.8, 128.1, 126.8, 21.1.

4,4'-Dimethyl-biphenyl (12c) ${ }^{7}$: ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta(\mathrm{ppm}): 7.47(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 4 \mathrm{H}) 7.23$ (d, $J=8.0 \mathrm{~Hz}, 4 \mathrm{H}), 2.38(\mathrm{~s}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($\left.100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta(\mathrm{ppm}): 138.4,136.7,129.5,126.9$, 21.1.

2,4'-Dimethyl-biphenyl (12d) ${ }^{8:}{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta(\mathrm{ppm}): 7.30-7.27(\mathrm{~m}, 8 \mathrm{H}), 2.44(\mathrm{~s}$, 3 H), $2.31(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta(\mathrm{ppm}): 141.9,139.1,136.4,135.4,130.3,129.9$, 129.1, 128.8, 127.1, 125.8, 21.2, 20.6.

4'-Methyl-biphenyl-4-ol (12e) ${ }^{9}$: ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta(\mathrm{ppm}): 7.44$ (d, $\left.J=8.4 \mathrm{~Hz}, 4 \mathrm{H}\right), 7.22$ $(\mathrm{d}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 6.89(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 4.75(\mathrm{~s}, 1 \mathrm{H}), 2.38(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta(\mathrm{ppm}): 154.8,137.9,136.4,134.0,129.4,128.1,126.5,115.5,21.0$.

3-Fluoro-4'-methyl-biphenyl (12f) ${ }^{10}:{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta(\mathrm{ppm}): 7.49-7.46(\mathrm{~m}, 2 \mathrm{H})$, 7.42-7.34 (m, 2H), 7.29-7.25 (m, 3H), 7.09-6.99 (m, 1H), 2.40(s, 3H); ${ }^{13} \mathrm{C} \mathrm{NMR} \mathrm{(100} \mathrm{MHz} ,\mathrm{CDCl}{ }_{3}$) $\delta(\mathrm{ppm}): 163.2(\mathrm{~d}, \mathrm{~J}=243.9 \mathrm{~Hz}), 143.4(\mathrm{~d}, \mathrm{~J}=7.8 \mathrm{~Hz}), 137.7,137.3,130.2(\mathrm{~d}, \mathrm{~J}=8.2 \mathrm{~Hz}), 129.6$, $126.9,122.7(\mathrm{~d}, \mathrm{~J}=19.8 \mathrm{~Hz}), 113.8(\mathrm{t}, \mathrm{J}=5.3 \mathrm{~Hz}), 113.7(\mathrm{~d}, \mathrm{~J}=4.7 \mathrm{~Hz}), 21.0$.

1-Methyl-4-p-tolyl-naphthalene (12g): ${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta(\mathrm{ppm}): 8.06(\mathrm{~d}, J=8.4 \mathrm{~Hz}$, $1 \mathrm{H}), 7.94(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.56-7.52(\mathrm{~m}, 1 \mathrm{H}), 7.45-7.41(\mathrm{~m}, 1 \mathrm{H}), 7.39-7.36(\mathrm{~m}, 3 \mathrm{H}), 7.32-7.29(\mathrm{~m}$, 3H), $2.75(\mathrm{~s}, 3 \mathrm{H}), 2.46(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta(\mathrm{ppm}): 138.6,138.1,136.7,133.5$, $132.8,131.8,130.0,128.9,126.7,126.5,126.1,125.5,124.3,21.2,19.5$. Analytical Data. Calcd (found) for $\mathrm{C}_{18} \mathrm{H}_{16}$: $\mathrm{C}, 93.06$ (93.12); $\mathrm{H}, 6.94$ (6.88).

3-p-Tolyl-furan (12h) ${ }^{11}:{ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta(\mathrm{ppm}): 7.70(\mathrm{~s}, 1 \mathrm{H}), 7.48-7.46(\mathrm{~m}, 1 \mathrm{H}), 7.38$ $(\mathrm{d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.18(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 6.68(\mathrm{~m}, 1 \mathrm{H}), 2.36(\mathrm{~s}, 3 \mathrm{H}),{ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ $\delta(\mathrm{ppm}): 143.5,138.1,136.7,129.4,129.4,126.8,125.7,108.8,21.1$.

15. NMR Spectra of Compounds

(

ppm (t1)
(

ppm (t1)

ppm (t1)

References

1. Y. Zhang, Z. Yuan and R. J. Puddephatt, Chem. Mater. 1998, 10, 2293.
2. F. M. Raymo, S. Giordani, A. J. P. White and D. J. Williams, J. Org. Chem. 2003, 68, 4158.
3. R. Mamidala, V. Mukundam, K. Dhanunjayarao and K. Venkatasubbaiah, Dalton Trans. 2015, 44, 5805.
4. W. J. Zhou, K. H. Wang and J. X. Wang, J. Org. Chem. 2009, 74, 5599.
5. I. Hoffmann, B. Blumenröder, S. Onodi neé. Thumann, S. Dommer and J. Schatz, Green Chem. 2015, 17, 3844.
6. B. Mu, J. Li, Z. Han and Y. Wu, Journal of Organometallic Chemistry. 2012, 700, 117.
7. A. R. Kapdi, G. Dhangar, J. L. Serrano, J. A. De Haro, P. Lozanod and Ian J. S. Fairlamb, RSC Adv. 2014, 4, 55305.
8. L. R. Moore, E. C. Western, R. Craciun, J. M. Spruell, D. A. Dixon, K. P. O’Halloran and K. H. Shaughnessy, Organometallics. 2008, 27, 576.
9. G. A. Edwards, M. A. Trafford, A. E. Hamilton, A. M. Buxton, M. C. Bardeaux and J. M. Chalker, J. Org. Chem. 2014, 79, 2094.
10. K. Cheng, C. Wang, Y. Ding, Q. Song, C. Qi and X. M. Zhang, J. Org. Chem. 2011, 76, 9261. 11. P. Nanayakkara and H. Alper, Adv. Synth. Catal, 2006, 348, 545.
