Supporting Information

N, S and P-ternary doped carbon nano-pore/tubes composites derived from natural chemicals in the waste sweet osmanthus fruit with superior activity for oxygen reduction in acidic and alkaline media

Ziwu Liu*, Fang Wang, Meng Li, Zhong-Hai Ni*

Low Carbon Energy Institute and School of Chemical Engineering, China University

of Mining & Technology, Xuzhou 221008, Jiangsu, China *Corresponding author, Email address: lzwmsy@

lzwmsy@cumt.edu.cn,

nizhonghai@cumt.edu.cn, Fax: +86-516-83883501.

1. Supplemental Table and Figures

Table S1 Main elemental composition, pore size and volume and BET surface area of each synthesized sample.

Samples	EDS (wt.%)					Pore diameter (nm)			Pore volume (cm ³ /g)			
	С	0	N	S	Р	\overline{d}	Micr opor e d	Mes opor e d	Tota 1 V	Micr opor e V	Mes opor e V	S _{BET} (m²/g)
NSP-NPC	67.33	11.15	0.32	6.39	0.54	3.30	0.44	3.82	0.38	0.18	0.16	462.71
NS- CNPTCs	73.47	3.02	3.54	0.29	-	29.68	0.50	3.82	0.18	0.01	0.07	24.71
NSP- CNPTCs1	68.83	8.14	5.20	0.46	0.53	8.41	0.59	3.83	0.61	0.12	0.30	289.08
NSP- CNPTCs2	74.19	4.36	5.77	0.40	0.34	15.40	0.50	3.69	0.93	0.10	0.47	295.28
NSP- CNPTCs3	70.25	8.79	4.07	0.36	0.39	18.28	0.41	3.82	1.32	0.12	0.71	288.30

Figure S1. The micro-pore size distributions of the NSP-NPC, NS-CNPTCs, NSP-CNPTCs1, NSP-CNPTCs2 and NSP-CNPTCs3.

Figure S2. The Fe2p spectra of NS-CNPTCs, NSP-CNPTCs1, NSP-CNPTCs2 and NSP-CNPTCs3.

Figure S3. The ORR activity changes of NSP-CNPTCs2 before and after the removing of Fe in NSP-CNPTCs2 in12 M HCl solution for 2 h.

Figure S4. The ORR activities of NSP-CNPTCs synthesized by different amounts of $Fe_2(SO4)_3$ catalysts.