Supporting Information

Introduction of O-sulfonated poly(vinylpyrrolidonium) hydrogen sulfate as an

efficient, and reusable solid acid catalyst for some of the solvent-free

multicomponent reactions

Omid Goli-Jolodar, Farhad Shirini* and Mohadeseh Seddighi

Department of Chemistry, Faculty of Sciences, University of Guilan, Rasht, zip code: 41335.

Post Box: 1914, I. R. Iran. Tel./Fax: +98 131 3233262, E-mail address: shirini@guilan.ac.i

Experimental

Material

Chemicals were purchased from Fluka, Merck, Aldrich and Southern Clay Products Chemical Companies. Yields refer to isolated products. Products were characterized by their physical constants, comparison with authentic samples and IR and NMR spectroscopy. The purity determination of the substrate and reaction monitoring were accomplished by TLC on silics-gel polygram SILG / UV 254 plates.

Instrumentation

The FT-IR spectra were run on a VERTEX 70 Bruker company (Germany). Thermogravimetric analyses (TGA) were performed n TG/DTA6300 Sll-Nonotechnology Company (Japan) (Samples were heated from 25 to 800 °C at ramp 10 °C min⁻¹ under N₂atmosphere). Scanning election microphotographs (SEM) were obtained on a SEM-Philips XL30. The Wide-angle X-ray diffraction (XRD) measurements were performed at room temperature on a Siemens D-500 X-ray diffractometer (Germany), using Ni-filteredCo-K α radiation ($\lambda = 0.15418$ nm). Elemental analyses of the samples were performed on a Vario EL III CHNOS Elemental Analyzer (Germany).

General procedure for the preparation of the [PVP-SO₃H]HSO₄ solid acid catalyst

Chlorosulfonic acid (1.2 mL, 18 mmol) was added to a suspension of powdered poly(vinylpyrrolidone) (2.0 g) [cross-linked poly(4-vinylpyridine) with MW > 1,000,000] in 10 mL dry CH₂Cl₂ over a period of 15 min. The mixture was stirred at room temperature for 3h and then the mixture was filtered. The solid residue was washed with ethyl acetate (20 mL) and dried at 80 °C to afford [PVP-SO₃H]Cl as a pale yellow powder.⁵⁰ The amount of chloride in [PVP-SO₃H]Cl was determined by potentiometric titration methods.⁵¹ For this purpose, 0.5 g [PVP-SO₃H]Cl in 50 mL water was titrated with 0.1 M AgNO₃. As shown in Fig. 1, the change happened at 15 mL of consumed AgNO₃. On the basis of these studies it can be concluded that [PVP-SO₃H]Cl has 3 mmol of Cl⁻ per gram of this reagent. After modulating of chloride, 3 g of [PVP-SO₃H]Cl was suspended in 20 mL of dry CH₂Cl₂. Then and under vigorous stirring, 9 mmol of concentrated H₂SO₄ (97%) was added drop wise to this mixture in an ice bath (0 °C) over a period of 15 min. The mixture was then warmed to room temperature and heated under reflux for 8 h. When the formed HCl was completely distilled off, the solution was cooled and CH₂Cl₂ was removed under vacuum to afford *O*-sulfonated poly(vinylpyrrolidonium) hydrogen sulfate ($[PVP-SO_3H]HSO_4$) as the brown solid product (4.8 gr).

Fig. 1. Potentiometric titration curve of [PVP-SO₃H]Cl with AgNO₃.

Table 1. Elemental	analysis data o	of the PVP (1), [PVP-SO ₃ H]Cl	(2) and [PVP-	$-SO_3H]HSO_4(3)$
samples.					

	Entry	PVP	[PVP-SO ₃ H]Cl	[PVP-SO ₃ H]HSO ₄
	С	68.04	37.28	30.09
(%)	Н	10.71	6.26	5.37
alcul.	Ν	9.92	5.43	4.39
Ü	Cl		13.75	—
	С	67.89	35.42	25.57
(%)	Н	10.65	5.82	4.51
ound	Ν	10.12	5.10	3.63
Ĩ	Cl	—	12.78	_
C	onversion (%)		~ 95	~ 85

Fig. 2. FT-IR spectra of PVP (A), [PVP-SO₃H]Cl (B) and [PVP-SO₃H]HSO₄ (C).

Fig. 3. TGA and DTGA curves for [PVP-SO₃H]HSO₄.

Fig. 4. SEM micrographs of PVP (a,b) [PVP-SO₃H]Cl (c,d) and [PVP-SO₃H]HSO₄ (e,f).

Entry	Catalyst	A _{max}	[I] _s %	[IH ⁺] _s %	H_0
1		2.2086	100	0	0.99
2	[PVP-SO ₃ H] Cl	1.0025	45.39	54.61	0.90
3	[PVP-SO ₃ H] HSO ₄	0.2318	10.49	89.51	0.058
4	Recovered catalyst	0.7384	33.43	66.56	0.69

Table 2. Calculation of Hammett acidity function (H_0) for [PVP-SO₃H]Cl and [PVP-SO₃H]HSO₄.

Condition for UV-visible spectrum measurement: solvent: CCl_4 , indicator: 4-nitroaniline (pK (I) aq= 0.99), 1.44×10-4 mol/L (10 mL); Catalyst: [PVP-SO₃H]Cl and [PVP-SO₃H]HSO₄ (5 mg), 25 °C.

Fig. 5. Absorption spectra of 4-nitroaniline (indicator) [PVP-SO₃H]Cl and [PVP-

SO₃H]HSO₄(catalyst) in CCl₄.

Fig. 6. XRD patterns of PVP in comparison with [PVP-SO₃H]Cl and [PVP-SO₃H]HSO₄.

Fig. 7. pH meter titration curve of [PVP-SO₃H]HSO₄ with NaOH (0.05 M).

General procedure for the synthesis of tetrahydrobenzimidazo[2,1-b]quinazolin-1(2*H*)-one derivatives

A mixture of the requested aldehyde (1 mmol), 2-aminobenzimidazole (1 mmol), dimedone (1 mmol) and [PVP-SO₃H]HSO₄ (25 mg, 8.65 mol%) was heated in an oil bath (90 °C) under solvent-free conditions for the appropriate time. After completion of the reaction that monitored by TLC [*n*-hexane : ethylacetate(8:4)], EtOH was added and the catalyst was separated by filteration. Then water was added and the precipitated product was separated by filtration in high purity.

Scheme 1. Synthesis of tetrahydrobenzimidazo[2,1-*b*]quinazolin-1(2*H*)-one derivatives catalyzed by [PVP-SO₃H]HSO₄.

Entry	Aldehvde	Time (min)	Yield (%) ^a	Melting point (°C)		
	Jac Jac	- ()			Reported Ref.	
1A	C ₆ H ₅ -	12	94	>350	359-363 ²⁰	
1B	2-Cl-C ₆ H ₄ -	16	92	340-342	>300 30	
1C	3-Br–C ₆ H ₅ –	15	93	334-336	>300 30	
1D	2-CH ₃ -C ₆ H ₅ -	25	92	334-336	>300 30	
1E	3-Cl-C ₆ H ₄ -	12	94	340-342	>300 30	
1F	3-CH ₃ O-C ₆ H ₅ -	13	94	320-322	>300 31	
1 G	3-NO ₂ -C6H5-	13	95	335-337	>300 30	
1H	4-Cl-C ₆ H ₄ -	14	96	>350	>300 20	
1I	4-Br-C ₆ H ₄ -	14	94	>350	>300 20	
1J	4-CH ₃ O-C ₆ H ₅ -	10	94	340-342	>300 20	
1K	4-NO ₂ -C ₆ H ₅ -	8	95	344-346	>300 20	
1L	4-OH–C ₆ H ₅ –	25	93	332-334	330-332 ²⁰	
1M	4-CH ₃ S–C ₆ H ₄ –	10	92	342-344	-	
1N	4-CN-C ₆ H ₅ -	10	94	340-342	-	
10	4-CH ₃ -C ₆ H ₅ -	20	94	340-342	>300 31	
1P	2-naphthyl-	15	93	344-346	-	
1Q	ССССС	15	92	347-349	-	

Table 3. Preparation of tetrahydrobenzimidazo[2,1-b]quinazolin-1(2*H*)-one derivatives using [PVP-SO₃H]HSO₄ as the catalyst.

^a Isolated yield.

The spectral data of the selected compounds:

3,3-Dimethyl-12-(4-thiomethyl-phenyl)-3,4,5,12-tetrahydrobenzimidazo [2,1-*b*]quinazolin-**1(2***H***)-one (1M):** White solid, Yield: 87 %, M.p. 342-344 °C; FT-IR (KBr) v_{max} = 3418, 3148, 2954, 1671, 1568, 1375, 1262, 744 cm⁻¹; ¹H NMR (DMSO-*d*₆, 400 MHz): δ 1.07 (6H, s, CH₃), 2.15 (4H, s, CH₂), 2.40 (3H, s, SCH₃), 6.12 (1H, s), 6.93 (2H, d, *J* = 8.0 Hz), 7.03 (2H, d, *J* = 7.6 Hz), 7.07-7.11 (2H, m), 7.25-7.28 (2H, m), 7.65 (1H, s, NH) ppm.; ¹³C NMR (DMSO-*d*₆, 100 Mz): δ = 15.8, 28.8, 30.3, 31.6, 48.8, 111.8, 114.8, 122.1, 126.1, 128.1, 132.7, 133,1, 142.8, 152.5 ppm.

Fig. 8. FT-IR of 3,3-Dimethyl-12-(4-thiomethyl-phenyl)-3,4,5,12-tetrahydrobenzimidazo [2,1-

Fig. 9. ¹H NMR of 3,3-Dimethyl-12-(4-thiomethyl-phenyl)-3,4,5,12-tetrahydrobenzimidazo

Fig. 10. ¹³C NMR of 3,3-Dimethyl-12-(4-thiomethyl-phenyl)-3,4,5,12-tetrahydrobenzimidazo

3,3-Dimethyl-12-(4-cyano-phenyl)-3,4,5,12-tetrahydrobenzimidazo[**2,1-***b***]quinazolin-1(2***H***)-one (1N):** White solid, Yield: 92%, M.p. 340-342 °C; FT-IR (KBr) $v_{max} = 3425$, 3045, 2962, 2227,1567, 1448,1358, 1264, 748 cm⁻¹; ¹H NMR (DMSO-*d*₆, 400 MHz): δ 0.92 (3H, s, CH₃), 1.07 (3H, s,CH₃), 2.07 (1H, d, *J* = 16.0 Hz), 2.28 (1H, d, *J* = 16.0 Hz), 2.67-2.69 (2H,m), 6.56 (1H, s), 6.98 (1H, td, *J*₁= 8.0 Hz, *J*₂ = 0.8 Hz), 7.08 (1H, td, *J*₁ = 8.2 Hz, *J*₂ = 0.8 Hz), 7.41 (1H, d, *J* = 8.0 Hz), 7.24 (1H, d, *J* = 8.0 Hz), 7.54 (2H, dd, *J*₁ = 5.0 Hz, *J*₂ = 1.6 Hz), 7.75 (2H, dd, *J*₁ = 5.0 Hz, *J*₂ = 1.6 Hz), 11.26 (1H, s, NH) ppm.; ¹³C NMR (DMSO-d₆, 100 Mz): Sample solubility was too low for ¹³C NMR.

Fig. 11. FT-IR of 3,3-Dimethyl-12-(4-cyano-phenyl)-3,4,5,12-tetrahydrobenzimidazo[2,1-

Fig. 12. ¹H NMR of 3,3-Dimethyl-12-(4-cyano-phenyl)-3,4,5,12-tetrahydrobenzimidazo[2,1-

Fig. 13. ¹³C NMR of 3,3-Dimethyl-12-(4-cyano-phenyl)-3,4,5,12-tetrahydrobenzimidazo[2,1-

1(2*H***)-one (1P):** White solid, Yield: 89%, M.p. 344-346 °C; FT-IR (KBr) $v_{max} = 3443$, 3050, 2964,1575, 1370, 1261, 746 cm⁻¹; ¹H NMR (DMSO- d_6 , 400 MHz): δ 0.94 (3H, s, CH₃), 1.08 (3H, s, CH₃), 2.04 (1H, d, J = 16.0 Hz), 2.29 (1H, d, J = 16.0 Hz), 2.67- 274 (2H, m), 6.60 (1H, s), 6.93 (1H, t, J = 7.6 Hz), 7.03 (1H, t, J = 7.6 Hz), 7.31 (2H,m), 7.38 (1H, d, J = 8.0 Hz), 7.49 (2H, m), 7.80 (2H, t, J = 7.6 Hz), 7.92 (1H, d, J = 7.6), 8.04 (1H, s), 11.19 (1H, s, NH) ppm.; ¹³C NMR (DMSO- d_6 , 100 Mz): Sample solubility was too low for ¹³C NMR.

3,3-Dimethyl-12-(2-naphthyl)-3,4,5,12-tetrahydrobenzo[4,5]imidazo[2,1-b]quinazolin-

Fig. 14. FT-IR of 3,3-Dimethyl-12-(2-naphthyl)-3,4,5,12-tetrahydrobenzo[4,5]imidazo[2,1-

Fig. 15. ¹H NMR of 3,3-Dimethyl-12-(2-naphthyl)-3,4,5,12-tetrahydrobenzo[4,5]imidazo[2,1-

12-(2-Fluorenyl)-3,3-dimethyl-3,4,5,12-tetrahydrobenzo[4,5]imidazo[2,1-b]quinazolin-

1(2*H***)-one (1Q):** White solid, Yield: 89%, M.p. 347-349 °C; FT-IR (KBr) $v_{max} = 3431$, 3047, 3229, 2908, 1575, 1372, 1264, 741 cm⁻¹; ¹H NMR (DMSO- d_6 , 400 MHz): δ 0.96 (3H, s, CH₃), 1.08 (3H, s, CH₃), 2.07 (1H, d, J = 16.0 Hz), 2.28 (1H, d, J = 16.0 Hz), 2.65-2.69 (2H, m), 3.85 (2H, s, CH₂), 6.50 (1H,s), 6.96 (1H, td, $J_1 = 7.2$ Hz, $J_2 = 1.2$ Hz), 7.05 (1H, td, $J_1 = 7.2$ Hz, $J_2 = 1.2$ Hz), 7.28 (1H, td, $J_1 = 7.2$ Hz, $J_2 = 1.2$ Hz), 7.31 (2H, d, J = 7.6 Hz), 7.38 (2H, d, J = 7.6 Hz), 7.54 (1H, d, J = 7.2 Hz), 7.78 (1H, d, J = 7.6 Hz), 7.81 (1H, d, J = 7.2 Hz), 11.1 (1H, s, NH) ppm.; ¹³C NMR (DMSO- d_6 , 100 Mz): Sample solubility was too low for ¹³C NMR.

Fig. 16. FT-IR of 12-(2-Fluorenyl)-3,3-dimethyl-3,4,5,12-tetrahydrobenzo[4,5]imidazo[2,1-

Fig. 17. 1H NMR of 12-(2-Fluorenyl)-3,3-dimethyl-3,4,5,12-tetrahydrobenzo[4,5]imidazo[2,1-

General procedure for the preparation of 1-(benzothiazolylamino)phenylmethyl-2naphthols

A mixture of the aldehyde (1 mmol), 2-aminobenzothiazole (1 mmol), 2-naphthol (1 mmol) and [PVP-SO₃H]HSO₄ (50 mg, 17.3 mol %) was heated in an oil bath (100 °C) under solvent-free conditions for the appropriate time (Table 1). After completion of the reaction that monitored by TLC [*n*-hexane : ethylacetate (8:2)], ethyl acetate (10 mL) was added and the catalyst was separated by filteration. In continue the solvent was evaporated, and the requested product was purified by recrystallization from aqueous ethanol.

Scheme 3. [PVP-SO₃H]HSO₄ catalyzed the synthesis of 1-(benzothiazolylamino)-phenylmethyl-

2-naphthols derivatives.

Fntwy	Aldobydo	Time (min)	Viold (0/)a	Melting point (°C)		
Entry	Aldenyde	1 ime (min)			Reported Ref.	
2A	C ₆ H ₅ -	6	94	201-203	202-204 37	
2B	2-Cl-C ₆ H ₄ -	6	90	188-190	187-189 ³⁷	
2 C	2-CH ₃ O-C ₆ H ₅ -	4	92	170-172	168-170 ³⁷	
2D	2-NO ₂ -C ₆ H ₄ -	6	93	218-220	215-216 37	
2 E	3-Br-C ₆ H ₅ -	4	92	203-205	203-205 37	
2 F	3-CH ₃ O-C ₆ H ₅ -	6	91	184-186	184-186 ³⁷	
2G	3-NO ₂ -C6H5-	6	93	190-192	191-194 ³³	
2 H	3-CH ₃ -C ₆ H ₅ -	6	95	187-188	189-191 ⁵⁵	
21	4-Cl-C ₆ H ₄ -	4	94	208-210	209-210 32	
2J	4-Br–C ₆ H ₄ –	4	93	211-213	200-202 37	
2K	4-CH ₃ O–C ₆ H ₅ –	5	95	172-174	172-173 ³⁶	
2L	4-NO ₂ -C ₆ H ₅ -	5	92	186-188	187-189 ³⁷	
2M	2-naphthyl-	5	95	197-199	197-199 ⁶⁰	
2N	ССССНО	5	92	194-196	195-197 ⁶⁰	
20	2-pyridyl-	10	92	191-193	-	
2P	3-pyridyl–	6	93	187-188	189-190 ³⁷	
2Q	4-pyridyl-	5	89	209-211	210-212 37	

Table 4. Preparation of 1-(benzothiazolylamino)phenylmethyl-2-naphthol derivatives catalyzed by [PVP-SO₃H]HSO₄ under solvent-free conditions.

2R	онс	6	88	214-216	215-217 60
Inclosed	al d a				

^a Isolated yields.

1-((Benzo[d]thiazol-2-ylamino)(pyridin-2-yl)methyl)naphthalen-2-ol (2O) : White solid, Yield: 91%, M.p. 191-193 °C; FT-IR (KBr) $v_{max} = 3381$, 1526, 1444, 1332, 1267, 1201, 1046, 745 cm⁻¹; ¹H NMR (DMSO-d₆, 400 MHz): δ 7.00 (s, 1H), 7.02-7.80 (m, 15H), 8.80 (s, 1H), 10.28 (br, 1H) ppm; ¹³C NMR (DMSO-d₆, 100 MHz): δ 21.7, 119.3, 121.4, 121.4, 122.9, 123.7, 123.7, 125.9, 126.0, 126.8, 126.9, 127.1, 127.4, 127.5, 128.4, 128.5, 129.1, 130.0, 131.2, 132.6, 137.5, 143.0, 152.6, 153.6, 166.8 ppm.

Fig. 18. FT-IR of 1-((Benzo[d]thiazol-2-ylamino)(pyridin-2-yl)methyl)naphthalen-2-ol.

Fig. 19. ¹H NMR of 1-((Benzo[d]thiazol-2-ylamino)(pyridin-2-yl)methyl)naphthalen-2-ol.

General procedure for the preparation of 2*H*-indazolo[2,1-b]phthalazine-1,6,11(13*H*)triones

A mixture of the requested aldehyde (1 mmol), dimedone and/ or 1,3-cyclohexadione (1 mmol), phthalhydrazide (1 mmol) and [PVP-SO₃H]HSO₄ (10 mg, 3.46 mol%) was heated in an oil bath (80 °C) under solvent-free conditions for the appropriate time. After completion of the reaction that monitored by TLC [*n*-hexane : ethylacetate(8:2)], EtOH was added and the catalyst was separated by filteration. Then water was added and the precipitated product was separated by filtration in high purity.

Scheme 4. [PVP-SO₃H]HSO₄ catalyzed the synthesis of 2*H*-indazolo[2,1-*b*]phthalazine-

1,6,11(13*H*)-triones derivatives.

Fntm	Aldehyde	R Time	Time (min)	n) Yield (%) ^a	Melting point (°C)	
Entry			i iiie (min)		Found	Reported ref.
3 A	C ₆ H ₅ -	CH ₃	10	90	202-203	205-207 61
3B	2-Cl-C ₆ H ₄ -	CH_3	18	89	254-257	262-264 ⁶¹
3 C	2-CH ₃ O-C ₆ H ₅ -	CH_3	17	88	245-247	242-243 44
3D	2-NO ₂ -C ₆ H ₄ -	CH_3	20	91	235-238	236-238 ⁴³
3 E	2-OH-C ₆ H ₄ -	CH_3	20	90	180-182	184-188 ^{39d}
3F	3-CH ₃ O-C ₆ H ₅ -	CH_3	12	93	198-200	206-208 43
3G	3-NO ₂ -C6H5-	CH_3	13	94	268-270	270-271 ⁶¹
3 H	$4-Cl-C_6H_4-$	CH_3	8	96	257-259	262-264 ⁶¹
3 I	4 -Br– C_6H_4 –	CH_3	8	95	252-256	258-260 ⁶¹
3J	4-CH ₃ O-C ₆ H ₅ -	CH_3	12	94	215-217	220-221 ⁶¹
3K	4-NO ₂ -C ₆ H ₅ -	CH_3	15	93	217-220	220-222 ⁶¹
3 L	C ₆ H ₅ -	Н	8	95	220-222	222-224 ^{39c}
3M	2-Cl-C ₆ H ₄ -	Н	15	93	232-234	-
3N	2-NO ₂ -C ₆ H ₄ -	Н	18	92	248-250	-
30	3-NO ₂ -C6H5-	Н	12	92	222-224	228-230 ^{39c}
3P	4-Cl-C ₆ H ₄ -	Н	6	93	250-255	39c
3Q	4 -Br– C_6H_4 –	Н	6	94	270-274	279-282 ^{39d}

Table 5. Preparation of 2*H*-indazolo[2,1-*b*]phthalazine-1,6,11(13*H*)-triones derivatives using $[PVP-SO_3H]HSO_4$ as the catalyst.

3U	4-CH ₃ -C ₆ H ₅ -	Н	5	90	237-240	244-246 ^{39c}	
3 V	4-OH-C ₆ H ₄ -	Н	15	93	259-261	265-266 ^{39c}	
3W	4-(CH ₃) ₂ N-C ₆ H ₄ -	Н	17	85	248-251	256-258 39c	

^aIsolated yield.

13-(2-Chlorophenyl)-2,3,4,13-tetrahydro-1*H***-indazolo**[**1,2-b**]**phthalazine-1,6,11-trione** (**3M**): White solid, Yield: 93%, M.p. 232-234 °C; FT-IR (KBr): *v*_{max} = 3075, 2959, 1658, 1526, 1357, 1311, 1267, 1139, 1017, 701 cm⁻¹. ¹H NMR (DMSO-*d*₆, 400 MHz): δ 2.13-2.14 (m, 2H, CH₂), 2.32-2.36 (m, 2H, CH₂), 3.29-3.45 (m, 2H, CH₂), 6.61 (s, 1H, CH), 7.27-7.31 (m, 2H, Ar-H), 7.39-7.41 (m, 2H, Ar-H), 7.52-7.54 (m, 1H, Ar-H), 7.09-8.00 (m, 2H, Ar-H), 8.08-8.10 (m, 1H, Ar-H), 8.28-8.30 (m, 1H, Ar-H) ppm.

Fig. 20. FT-IR of 13-(2-Chlorophenyl)-2,3,4,13-tetrahydro-1H-indazolo[1,2-b]phthalazine-

1,6,11-trione.

Fig. 21. ¹H NMR of 13-(2-Chlorophenyl)-2,3,4,13-tetrahydro-1*H*-indazolo[1,2-b]phthalazine-

1,6,11-trione.

13-(2-Nitrophenyl)-2,3,4,13-tetrahydro-1*H***-indazolo[1,2-b]phthalazine-1,6,11-trione (3N):** White solid, Yield: 92%, M.p. 248-250 °C; FT-IR (KBr): $v_{max} = 2954$, 1660, 1524, 1364, 1271, 698 cm⁻¹.; ¹H NMR (DMSO- d_6 , 400 MHz): δ 2.10-2.17 (m, 2H, CH₂), 2.33-2.36 (m, 2H, CH₂), 3.24-3.45 (m, 2H, CH₂), 7.18 (s, 1H, CH), 7.52-7.56 (1H, td, $J_I = 7.2$ Hz, $J_2 = 1.2$ Hz), 7.61-7.65 (1H, td, $J_I = 7.2$ Hz, $J_2 = 1.2$ Hz), 7.61-7.65 (1H, td, $J_I = 7.2$ Hz, $J_2 = 1.2$ Hz), 7.61-7.65 (1H, td, $J_I = 7.2$ Hz, $J_2 = 1.2$ Hz), 7.70-7.72 (2H, dd, $J_I = 8.0$ Hz, $J_2 = 1.2$ Hz), 7.97-8.01 (m, 3H, Ar-H), 8.07-8.11 (m, 1H, Ar-H), 8.27-8.29 (m, 1H, Ar-H) ppm.; ¹³C NMR (DMSO- d_6 , 100 MHz,) : δ 192.75, 155.87, 154.40, 154.21, 149.28, 135.07, 134.37, 134.13, 131.80, 131.25, 129.78, 129.61, 133.538, 132.547, 132.393, 132.108, 125.427, 63.976, 39.559, 27.569, 25.566 ppm.

Fig. 22. FT-IR of 13-(2-Nitrophenyl)-2,3,4,13-tetrahydro-1H-indazolo[1,2-b]phthalazine-1,6,11-

trione.

Fig. 23. ¹H NMR of 13-(2-Nitrophenyl)-2,3,4,13-tetrahydro-1*H*-indazolo[1,2-b]phthalazine-

1,6,11-trione.

Fig. 24. ¹³C NMR of 13-(2-Nitrophenyl)-2,3,4,13-tetrahydro-1*H*-indazolo[1,2-b]phthalazine-

1,6,11-trione.

4-(1,6,11-Trioxo-2,3,4,6,11,13-hexahydro-1*H***-indazolo**[**1,2-b**]**phthalazin-13-yl)benzonitrile** (**3T**): White solid, Yield: 93%, M.p. 284-285 °C; FT-IR (KBr): $v_{max} = 2953$, 2658, 1472, 1361, 1306, 1262, 835, 698 cm⁻¹. ¹H NMR (DMSO-*d*₆, 400 MHz): δ 2.11-2.13 (m, 2H, CH₂), 2.33-2.36 (m, 2H, CH₂), 3.21-3.26 (m, 2H, CH₂), 6.35 (s, 1H, CH), 7.71-7.73 (d, *J* = 8 Hz, 2H, Ar-H), 7.79-7.81 (d, *J* = 8 Hz, 2H, Ar-H), 7.97-8.01 (m, 2H, Ar-H), 8.09-8.11 (m, 1H, Ar-H), 8.28-8.30 (m, 1H, Ar-H) ppm.

Fig. 25. FT-IR of 4-(1,6,11-Trioxo-2,3,4,6,11,13-hexahydro-1*H*-indazolo[1,2-b]phthalazin-13-

yl)benzonitrile.

Fig. 26. ¹H NMR of 4-(1,6,11-Trioxo-2,3,4,6,11,13-hexahydro-1*H*-indazolo[1,2-b]phthalazin-

13-yl)benzonitrile.