Electronic Supplementary Information

Iron-copper bimetallic nanoparticles supported on hollow mesoporous silica sphere: The

effect of Fe/Cu ratio on heterogeneous Fenton degradation of dye

Jing Wang, Chao Liu, Ijaz Hussain, Cheng Li, Jiansheng Li*, Xiuyun Sun, Jinyou Shen, Weiqing Han, Lianjun Wang*

[*] J. Wang, C. Liu, I. Hussain, C. Li, Prof. J.S. Li, X.Y.Sun, J.Y.Shen, W.Q. Han, L.J. Wang

Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse

School of Environmental and Biological Engineering

Nanjing University of Science and Technology

Nanjing 210094, P.R .China

E-mail: lijsh@mail.njust.edu.cn; wanglj@mail.njust.edu.cn

Fig. S1. The evolution of the pH during the degradation of Orange II with different catalysts at pH 7.0 with 27.4 mM H_2O_2 , 1g/L catalyst dosage, 100 mg/L orange II , 30 °C, in 2 h reaction time.

Fig. S2. The concentration of iron ions leaching (A) and copper ions leaching (B) in degradation of Orange II with different catalysts at pH 7.0 with 27.4 mM H_2O_2 , 1g/L catalyst dosage, 100 mg/L orange II , 30 °C, in 2 h reaction time.

Fig. S3. Degradation of orange II in different batch runs in the (A) 8Fe/HMS, (B) 6Fe2Cu/HMS, (C) 4Fe4Cu/HMS and (D) 8Cu/HMS systems.

Compound	Retention time	Chemical name	Chemical structure
		4-[2-(2-hydroxy-1-	SO ₃ H
А	4.7 min	naphthalenyl)hydrazinyl]-	HN OH
		benzenesulfonic acid	
В	2.1 min	4-amino-benzenesulfonic	NH2-SO3H
С	3.4 min	2-hydroxy- 1,4-	OH
		naphthalenedione	
D	2.4 min	1.2 nonkthelenediel	OH -OH
D	2.4 min	1,2-naphtnatenedioi	
Е	4.1 min	1,2-benzenedicarboxylic	ОН
			ОН

Table S1 HPLC-MS identified possible reaction products during orange II degradation

The cost of synthesis catalyst/g		The cost of degradation of Orange II/L	
	Cost (yuan)		Cost (yuan)
NH ₃ ·H ₂ O	0.08		
СТАВ	0.49		<u> 9 2 4</u>
TEOS	0.47	0.47	
Ethanol	3.00		
FeSO₄·7H ₂ O	0.002		0.05
Cu(NO ₃) ₂ ·3H ₂ O	0.028	ШО	
NaBH ₄	0.27	H ₂ O ₂	
Methanol	3.00		
Electric Power1.00Total8.34		Total	8.39

Table S2 The capital cost of 2Fe6Cu/HMS to degradation of 1000 mg/L Orange II

Cost analysis

The capital cost of 2Fe6Cu/HMS to degradation of 1000 mg/L Orange II was list in Table S2. From the calculation, it can be seen that the synthesis of 1 g 2Fe6Cu/HMS would cost 8.34 yuan. During the degradation of 1 L 1000 mg/L Orange II with the catalyst dosage of 1 g/L and H_2O_2 dosage of 27.4 mM, the cost of catalyst and H_2O_2 would be 8.34 and 0.05 yuan, respectively. Totally, it would cost 8.39 yuan. Moreover, it can be observed that the final dye removal rate is 77.7% when conducted at Orange II concentration of 1000 mg/L. Therefore, the cost to degradation of 1 g Orange II is 10.80 yuan.