Supporting Information

Electrochemically fabricated electrochromic films from 4-(N-

carbazolyl)triphenylamine and its dimethoxy derivative

Sheng-Huei Hsiao* and Hui-Min Wang

Department of Chemical Engineering and Biotechnology, National Taipei University of Technology,

Taipei, Taiwan, E-mail: shhsiao@ntut.edu.tw

List of Contents for Supplementary Material:

Fig. S1 IR spectra of monomers TPACz and MeOTPACz.

Fig. S2 (a) ¹H and (b) ¹³C NMR spectra of TPACz in CDCl₃.

Fig. S3 (a) ¹H and (b) ¹³C NMR spectra of MeOTPACz in CDCl₃.

Fig. S4 (a) H-H COSY and (b) C-H HMQC spectra of TPACz in DMSO- d_6 .

Fig. S5 (a) H-H COSY and (b) C-H HMQC spectra of MeOTPACz in DMSO- d_6 .

Fig. S6 UV-Vis absorption and PL spectra of the dilute solutions of (a) TPACz and PTPACz

(b) MeOTPACz and (MeOTPACz)₂ in CH_2Cl_2 (1 x 10⁻⁵ M).

Fig. S7 UV-vis spectra of (a) TPACz monomer and (b) PTPACz in CHCl₂ solution, and (c)

PTPACz on the ITO/glass surface.

Fig. S8 Optimized geometry and spatial distributions of the HOMO and LUMO for **TPACz.**

Table S1 Bond lengths [Å] and bond angles [°] for TPACz and MeOTPACz

Scheme S1 Anodic oxidation pathways of (a) PTPACz and (b) (MeOTPACz)2.

Chemical oxidative polymerization

PTPACz could also be prepared by the chemical oxidative polymerization of **TPACz** with FeCl₃ as an oxidant. In a 50-mL two-necked round-bottom flask equipped with a stirring bar under nitrogen atmosphere, a mixture of **TPACz** (0.41 g, 1 mmol), FeCl₃ (0.40 g, 2.5 mmol) in nitrobenzene (2 mL) was stirred at room temperature for 24 h. The reaction mixture was poured into methanol containing 10% hydrochloric acid. The precipitate was collected and washed thoroughly with aqueous ammonium hydroxide. The crude polymer (0.33 g, 80 % yield) was re-dissolved in chloroform. After removing the insoluble fraction by filtration, the filtrate was condensed and poured into methanol. The resulting precipitate was washed with methanol and dried under reduced pressure to yield the polymer **PTPACz** (0.25 g, 61 % yield).

Fig. S1 IR spectra of monomers TPACz and MeOTPACz.

Fig. S2 (a) ¹H and (b) ¹³C NMR spectra of TPACz in CDCl₃.

Fig. S3 (a) ¹H and (b) ¹³C NMR spectra of MeOTPACz in CDCl₃.

Fig. S4 (a) H-H COSY and (b) C-H HMQC spectra of TPACz in DMSO- d_6 .

Fig. S5 (a) H-H COSY and (b) C-H HMQC spectra of MeOTPACz in DMSO-d₆.

Fig. S6 UV-Vis absorption and PL spectra of the dilute solutions of (a) **TPACz** and **PTPACz** (b) **MeOTPACz** and **(MeOTPACz)**₂ in CH₂Cl₂ (1 x 10⁻⁵ M). Quinine sulfate dissolved in 1 M H₂SO₄ (aq.) with a concentration of 1 x 10⁻⁵ M as the standard (Φ_F = 54.6%). Photos show PL images of the solutions upon UV exposure (excited at 365 nm).

Fig. S7 UV-vis spectra of (a) **TPACz** monomer and (b) **PTPACz** in CHCl₂ solution, and (c) **PTPACz** on the ITO/glass surface.

Fig. S8 Optimized geometry and spatial distributions of the HOMO and LUMO for TPACz.

Table S1 Bond lengths [Å] and bond angles [°] for TPACz and MeOTPACz

TPACz

MeOTPACz

TPACz			
Bond lengths [Å]		Bond angles [°]	
C(1)-C(2)	1.3925(19)	C(2)-C(1)-N(1)	129.62(12)
C(1)-N(1)	1.3965(17)	C(2)-C(1)-C(6)	121.64(13)
C(1)-C(6)	1.4118(18)	(1)-C(1)-C(6)	108.71(12)
C(2)-C(3)	1.382(2)	C(3)-C(2)-C(1)	117.66(14)
C(2)-H(2)	0.95	C(3)-C(2)-H(2)	121.2
C(3)-C(4)	1.393(2)	C(1)-C(2)-H(2)	121.2
С(3)-Н(3)	0.95	C(2)-C(3)-C(4)	121.52(15)
C(4)-C(5)	1.378(2)	C(2)-C(3)-H(3)	119.2
C(4)-H(4)	0.95	C(4)-C(3)-H(3)	119.2
C(5)-C(6)	1.3960(19)	C(5)-C(4)-C(3)	120.74(14)
C(5)-H(5)	0.95	C(5)-C(4)-H(4)	119.6
C(6)-C(7)	1.4421(19)	C(3)-C(4)-H(4)	119.6
C(7)-C(12)	1.3988(19)	C(4)-C(5)-C(6)	119.39(14)
C(7)-C(8)	1.4041(18)	C(4)-C(5)-H(5)	120.3
C(8)-C(9)	1.3903(19)	C(6)-C(5)-H(5)	120.3
C(8)-N(1)	1.4012(16)	C(5)-C(6)-C(1)	119.03(13)
C(9)-C(10)	1.3810(19)	C(5)-C(6)-C(7)	133.84(13)
С(9)-Н(9)	0.95	C(1)-C(6)-C(7)	107.12(12)
C(10)-C(11)	1.393(2)	C(12)-C(7)-C(8)	119.21(13)

C(10)-H(10)	0.95	C(12)-C(7)-C(6)	133.86(13)
C(11)-C(12)	1.372(2)	C(8)-C(7)-C(6)	106.91(11)
C(11)-H(11)	0.95	C(9)-C(8)-N(1)	129.28(12)
C(12)-H(12)	0.95	C(9)-C(8)-C(7)	121.59(12)
C(13)-C(18)	1.3866(18)	N(1)-C(8)-C(7)	109.07(11)
C(13)-C(14)	1.3894(18)	C(10)-C(9)-C(8)	117.67(13)
C(13)-N(1)	1.4231(16)	C(10)-C(9)-H(9)	121.2
C(14)-C(15)	1.3852(17)	C(8)-C(9)-H(9)	121.2
C(14)-H(14)	0.95	C(9)-C(10)-C(11)	121.56(14)
C(15)-C(16)	1.3897(18)	C(9)-C(10)-H(10)	119.2
C(15)-H(15)	0.95	C(11)-C(10)-H(10)	119.2
C(16)-C(17)	1.3913(18)	C(12)-C(11)-C(10)	120.64(13)
C(16)-N(2)	1.4222(16)	C(12)-C(11)-H(11)	119.7
C(17)-C(18)	1.3845(18)	C(10)-C(11)-H(11)	119.7
C(17)-H(17)	0.95	C(11)-C(12)-C(7)	119.31(14)
C(18)-H(18)	0.95	C(11)-C(12)-H(12)	120.3
C(19)-C(24)	1.3866(19)	C(7)-C(12)-H(12)	120.3
C(19)-C(20)	1.3892(19)	C(18)-C(13)-C(14)	119.19(12)
C(19)-N(2)	1.4270(17)	C(18)-C(13)-N(1)	120.24(12)
C(20)-C(21)	1.380(2)	C(14)-C(13)-N(1)	120.57(12)
C(20)-H(20)	0.95	C(15)-C(14)-C(13)	120.62(12)
C(21)-C(22)	1.383(2)	C(15)-C(14)-H(14)	119.7
C(21)-H(21)	0.95	C(13)-C(14)-H(14)	119.7
C(22)-C(23)	1.379(2)	C(14)-C(15)-C(16)	120.43(12)
C(22)-H(22)	0.95	C(14)-C(15)-H(15)	119.8
C(23)-C(24)	1.382(2)	C(16)-C(15)-H(15)	119.8
C(23)-H(23)	0.95	C(15)-C(16)-C(17)	118.64(12)
C(24)-H(24)	0.95	C(15)-C(16)-N(2)	121.51(12)
C(25)-C(30)	1.3910(19)	C(17)-C(16)-N(2)	119.84(12)
C(25)-C(26)	1.3920(19)	C(18)-C(17)-C(16)	121.03(12)
C(25)-N(2)	1.4141(16)	C(18)-C(17)-H(17)	119.5
C(26)-C(27)	1.386(2)	C(16)-C(17)-H(17)	119.5
C(26)-H(26)	0.95	C(17)-C(18)-C(13)	120.08(12)
C(27)-C(28)	1.376(3)	C(17)-(18)-H(18)	120
C(27)-H(27)	0.95	C(13)-C(18)-H(18)	120
C(28)-C(29)	1.369(2)	C(24)-C(19)-C(20)	119.37(13)
C(28)-H(28)	0.95	C(24)-C(19)-N(2)	119.97(13)

C(29)-C(30)	1.380(2)	C(20)-C(19)-N(2)	120.66(13)
С(29)-Н(29)	0.95	C(21)-C(20)-C(19)	
С(30)-Н(30)	0.95	С(21)-С(20)-Н(20)	120
		С(19)-С(20)-Н(20)	120
		C(20)-C(21)-C(22)	120.53(15)
		C(20)-C(21)-H(21)	119.7
		С(22)-С(21)-Н(21)	119.7
		C(23)-C(22)-C(21)	119.61(15)
		С(23)-С(22)-Н(22)	120.2
		С(21)-С(22)-Н(22)	120.2
		C(22)-C(23)-C(24)	120.23(15)
		С(22)-С(23)-Н(23)	119.9
		С(24)-С(23)-Н(23)	119.9
		C(23)-C(24)-C(19)	120.30(14)
		С(23)-С(24)-Н(24)	119.8
		С(19)-С(24)-Н(24)	119.8
		C(30)-C(25)-C(26)	118.61(13)
		C(30)-C(25)-N(2)	120.34(13)
		C(26)-C(25)-N(2)	121.05(12)
		C(27)-C(26)-C(25)	119.92(15)
		С(27)-С(26)-Н(26)	120
		С(25)-С(26)-Н(26)	120
		C(28)-C(27)-C(26)	120.95(16)
		С(28)-С(27)-Н(27)	119.5
		С(26)-С(27)-Н(27)	119.5
		C(29)-C(28)-C(27)	119.17(15)
		С(29)-С(28)-Н(28)	120.4
		С(27)-С(28)-Н(28)	120.4
		C(28)-C(29)-C(30)	120.94(16)
		С(28)-С(29)-Н(29)	119.5
		С(30)-С(29)-Н(29)	119.5
		C(29)-C(30)-C(25)	120.40(15)
		C(29)-C(30)-H(30)	119.8
		С(25)-С(30)-Н(30)	119.8
		C(1)-N(1)-C(8)	108.19(10)
		C(1)-N(1)-C(13)	125.76(11)
		C(8)-N(1)-C(13)	126.05(11)

		C(25) N(2) C(16)	121 20(11)	
		C(25)-N(2)-C(10)	121.29(11)	
		C(16)-N(2)-C(19)	118.07(10)	
	Me	OTPAC7	110.07(10)	
Bond lengths [Å] Bond angles [°]			les [º]	
C(1)-C(7) 1.381(5)		C(7)-C(1)-C(2)	117.5(3)	
C(1)-C(2)	1.385(5)	C(7)-C(1)-N(1)	122.4(3)	
C(1)-N(1)	1.418(4)	C(2)-C(1)-N(1)	120.1(3)	
C(2)-C(3)	1.382(5)	C(3)-C(2)-C(1)	121.5(4)	
C(2)-H(2)	0.93	С(3)-С(2)-Н(2)	119.2	
C(3)-C(4)	1.372(5)	C(1)-C(2)-H(2)	119.2	
С(3)-Н(3)	0.93	C(4)-C(3)-C(2)	120.0(3)	
C(4)-C(6)	1.374(5)	С(4)-С(3)-Н(3)	120	
C(4)-O(1)	1.378(4)	С(2)-С(3)-Н(3)	120	
C(5)-O(1)	1.415(5)	C(3)-C(4)-C(6)	118.9(3)	
C(5)-H(5A)	0.96	C(3)-C(4)-O(1)	125.1(3)	
С(5)-Н(5В)	0.96	C(6)-C(4)-O(1)	116.1(3)	
C(5)-H(5C)	0.96	O(1)-C(5)-H(5A)	109.5	
C(6)-C(7)	1.376(5)	O(1)-C(5)-H(5B)	109.5	
С(6)-Н(6)	0.93	H(5A)-C(5)-H(5B)	109.5	
С(7)-Н(7)	0.93	O(1)-C(5)-H(5C)	109.5	
C(8)-C(14)	1.372(5)	H(5A)-C(5)-H(5C)	109.5	
C(8)-C(9)	1.376(5)	H(5B)-C(5)-H(5C)	109.5	
C(8)-N(1)	1.432(4)	C(4)-C(6)-C(7)	121.1(3)	
C(9)-C(10)	1.376(5)	C(4)-C(6)-H(6)	119.4	
С(9)-Н(9)	0.93	C(7)-C(6)-H(6)	119.4	
C(10)-C(11)	1.381(5)	C(1)-C(7)-C(6)	120.8(3)	
C(10)-H(10)	0.93	C(1)-C(7)-H(7)	119.6	
C(11)-O(2)	1.373(4)	C(6)-C(7)-H(7)	119.6	
C(11)-C(13)	1.373(5)	C(14)-C(8)-C(9)	119.4(3)	
C(12)-O(2)	1.396(5)	C(14)-C(8)-N(1)	120.9(3)	
C(12)-H(12A)	0.96	C(9)-C(8)-N(1)	119.7(3)	
C(12)-H(12B)	0.96	C(8)-C(9)-C(10)	120.1(3)	
C(12)-H(12C)	0.96	C(8)-C(9)-H(9)	120	
C(13)-C(14)	1.379(5)	С(10)-С(9)-Н(9)	120	
C(13)-H(13)	0.93	C(11)-C(10)-C(9)	120.1(3)	
C(14)-H(14)	0.93	C(11)-C(10)-H(10)	119.9	

C(15)-C(20)	1.378(5)	C(9)-C(10)-H(10)	119.9
C(15)-N(1)	1.421(4)	C(10)-C(11)-O(2)	115.6(3)
C(15)-C(16)	1.382(5)	C(10)-C(11)-C(13)	120.1(3)
C(16)-C(17)	1.378(5)	O(2)-C(11)-C(13)	124.3(3)
C(16)-H(16)	0.93	O(2)-C(12)-H(12A)	109.5
C(17)-C(18)	1.375(5)	O(2)-C(12)-H(12B)	109.5
C(17)-H(17)	0.93	H(12A)-C(12)-H(12B)	109.5
C(18)-C(19)	1.380(4)	O(2)-C(12)-H(12C)	109.5
C(18)-N(2)	1.425(3)	H(12A)-C(12)-H(12C)	109.5
C(19)-C(20)	1.386(4)	H(12B)-C(12)-H(12C)	109.5
C(19)-H(19)	0.93	C(14)-C(13)-C(11)	119.3(3)
C(20)-H(20)	0.93	C(14)-C(13)-H(13)	120.4
C(21)-C(26)	1.392(4)	C(11)-C(13)-H(13)	120.4
C(21)-N(2)	1.398(4)	C(8)-C(14)-C(13)	121.0(3)
C(21)-C(22)	1.381(5)	C(8)-C(14)-H(14)	119.5
C(22)-C(23)	1.371(5)	C(13)-C(14)-H(14)	119.5
C(22)-H(22)	0.93	C(20)-C(15)-N(1)	119.2(3)
C(23)-C(24)	1.382(6)	C(20)-C(15)-C(16)	118.7(3)
C(23)-H(23)	0.93	N(1)-C(15)-C(16)	122.0(3)
C(24)-C(25)	1.363(6)	C(17)-C(16)-C(15)	120.7(3)
C(24)-H(24)	0.93	C(17)-C(16)-H(16)	119.7
C(25)-C(26)	1.397(5)	C(15)-C(16)-H(16)	119.7
C(25)-H(25)	0.93	C(16)-C(17)-C(18)	120.4(3)
C(26)-C(27)	1.441(4)	C(16)-C(17)-H(17)	119.8
C(27)-C(28)	1.393(4)	C(18)-C(17)-H(17)	119.8
C(27)-C(32)	1.412(4)	C(19)-C(18)-C(17)	119.5(3)
C(28)-C(29)	1.367(6)	C(19)-C(18)-N(2)	120.1(3)
C(28)-H(28)	0.93	C(17)-C(18)-N(2)	120.4(3)
C(29)-C(30)	1.386(6)	C(18)-C(19)-C(20)	119.9(3)
C(29)-H(29)	0.93	C(18)-C(19)-H(19)	120.1
C(30)-C(31)	1.370(5)	C(20)-C(19)-H(19)	120.1
C(30)-H(30)	0.93	C(15)-C(20)-C(19)	120.8(3)
C(31)-C(32)	1.384(4)	С(15)-С(20)-Н(20)	119.6
C(31)-H(31)	0.93	С(19)-С(20)-Н(20)	119.6
C(32)-N(2)	1.387(4)	C(26)-C(21)-N(2)	109.0(3)
		C(26)-C(21)-C(22)	122.2(3)
		N(2)-C(21)-C(22)	128.8(3)

C(23)-C(22)-C(21)	117.3(3)
C(23)-C(22)-H(22)	121.4
C(21)-C(22)-H(22)	121.4
C(22)-C(23)-C(24)	121.3(4)
C(22)-C(23)-H(23)	119.3
C(24)-C(23)-H(23)	119.3
C(25)-C(24)-C(23)	121.5(3)
C(25)-C(24)-H(24)	119.2
С(23)-С(24)-Н(24)	119.2
C(24)-C(25)-C(26)	118.5(3)
C(24)-C(25)-H(25)	120.7
С(26)-С(25)-Н(25)	120.7
C(21)-C(26)-C(25)	119.1(3)
C(21)-C(26)-C(27)	107.3(3)
C(25)-C(26)-C(27)	133.6(3)
C(28)-C(27)-C(32)	118.8(3)
C(28)-C(27)-C(26)	134.6(3)
C(32)-C(27)-C(26)	106.5(3)
C(29)-C(28)-C(27)	119.3(4)
С(29)-С(28)-Н(28)	120.4
С(27)-С(28)-Н(28)	120.4
C(30)-C(29)-C(28)	120.9(3)
С(30)-С(29)-Н(29)	119.6
С(28)-С(29)-Н(29)	119.6
C(29)-C(30)-C(31)	121.8(4)
С(29)-С(30)-Н(30)	119.1
C(31)-C(30)-H(30)	119.1
C(32)-C(31)-C(30)	117.6(3)
C(32)-C(31)-H(31)	121.2
C(30)-C(31)-H(31)	121.2
N(2)-C(32)-C(31)	129.5(3)
N(2)-C(32)-C(27)	108.9(3)
C(31)-C(32)-C(27)	121.6(3)
C(15)-N(1)-C(1)	120.7(2)
C(15)-N(1)-C(8)	117.1(2)
C(1)-N(1)-C(8)	119.0(2)
C(21)-N(2)-C(32)	108.3(2)

C(21)-N(2)-C(18)	125.7(2)
C(32)-N(2)-C(18)	125.8(2)
C(4)-	O(1)-C(5)	117.2(4)
C(11)-O(2)-C(12)	119.2(3)

PTPACz

Scheme S1 Anodic oxidation pathways of (a) PTPACz and (b) (MeOTPACz)_{2.}