Esterification of poly(γ -glutamic acid) (γ -PGA) mediated by its

tetrabutylammonium salt

M. Biagiotti,^a G. Borghese,^a P. Francescato,^a C. F. Morelli,^a A. M. Albertini,^b T. Bavaro,^c D. Ubiali,^{c,d} R. Mendichi^e and G. Speranza^{a,d}

^aDipartimento di Chimica, Università degli Studi di Milano, via C. Golgi 19, I-20133 Milano (Italy)

^bDipartimento di Biologia e Biotecnologie "L. Spallanzani", Università degli Studi di Pavia, via A. Ferrata 9, I-27100 Pavia (Italy)

^cDipartimento di Scienze del Farmaco, Università degli Studi di Pavia, viale T. Taramelli 12, I-27100 Pavia (Italy)

^dISTM-CNR, via C. Golgi 19, I-20133 Milano (Italy)

^eISMAC-CNR, via E. Bassini 15, I-20133 Milano (Italy)

Electronic Supplementary Information

Molecular weight distribution (MWD)	pag. S2
Table S1 Molecular weight distribution (MWD) of γ -PGA (1), γ -PGA sodium salt (2) and γ -PGA tetrabutylammonium salt (3)	pag. S2
Table S2 Molecular weight distribution (MWD) of poly(α -ethyl γ -glutamate) (4), poly(α - benzyl γ -glutamate) (5) and poly(α - <i>n</i> -butyl γ -glutamate) (6)	pag. S2
Nuclear Magnetic Resonance (NMR)	pag. S3
Fig. S3 1 H NMR of γ -PGA tetrabutylammonium salt (3) (400 MHz, DMSO-d ₆)	pag. S3
Fig. S4 ^{13}C NMR of γ -PGA tetrabutylammonium salt (3) (100 MHz, DMSO-d_6)	pag. S4
¹ H NMR data of poly(α-ethyl γ-glutamate) (4), poly(α-benzyl γ-glutamate) (5) and poly(α- <i>n</i> -butyl γ-glutamate) (6) (400 MHz, DMSO-d ₆)	pag. S5

Molecular weight distribution (MWD)

Table S1 Molecular weight distribution (MWD) of γ -PGA (1), γ -PGA sodium salt (2) and γ -PGA tetrabutylammonium salt (3)

Sample	M _p Kg mol⁻¹	M _n Kg mol⁻¹	M _w Kg mol⁻¹	M₂ Kg mol⁻¹	M _w /M _n	M _z /M _w	Rec. Mass %
1	13.4	12.7	16.1	20.9	1.3	1.3	84.1
2	22.6	20.6	28.3	39.8	1.4	1.4	92.1
3	47.9	12.6	31.6	47.0	2.5	1.5	96.0

Table S2 Molecular weight distribution (MWD) of poly(α -ethyl γ -glutamate) (4), poly(α -benzyl γ -glutamate) (5) and poly(α -*n*-butyl γ -glutamate) (6)

Sample	M _p Kg mol⁻¹	M _n Kg mol⁻¹	M _w Kg mol⁻¹	M₂ Kg mol⁻¹	M _w /M _n	M _z /M _w	Rec. Mass %
4 A1	29.6	19.3	33.4	52.7	1.7	1.6	95.2
4 B1	15.3	12.0	30.0	73.2	2.5	2.4	15.6
4 A2	30.4	20.1	30.8	42.6	1.5	1.4	93.4
4 B2	23.3	10.9	21.8	34.8	2.0	1.6	11.6
5	45.2	19.2	39.5	61.7	2.1	1.6	22.4
6	23.1	14.0	20.8	28.5	1.5	1.4	50.6

Nuclear Magnetic Resonance (NMR)

Fig. S3 ¹H NMR of γ -PGA tetrabutylammonium salt (3) (400 MHz, DMSO-d₆)

Fig. S4 13 C NMR of γ -PGA tetrabutylammonium salt (3) (100 MHz, DMSO-d₆)

¹H NMR of poly(α -ethyl γ -glutamate) (4)

¹H NMR (400 MHz, DMSO-d₆) δ 1.18 (t, J=7.2 Hz, 3H, -OCH₂CH₃), 1.70-1.81 (m, 1H, -CH₂CH₂CO-), 1.89-2.01 (m, 1H, -CH₂CH₂CO-), 2.16-2.26 (m, 2H, -CH₂CO-), 4.02-4.12 (m, 2H, -OCH₂CH₃), 4.15-4.23 (broad m, 1H, -CHCOO), 8.24 (d, J=7.4 Hz,1H, -CONH).

Signal area *ratio* of the side-chain OCH₂ to the main-chain CH was:

- 1.43 in the case of 4A1, corresponding to 72% functionalization degree;

- 2.0 in the case of 4A2, corresponding to 100% functionalization degree;

- 0.45 in the case of 4B1, corresponding to 22% functionalization degree;

- 2.0 in the case of 4B2, corresponding to 100% functionalization degree.

Additional signals in the intervals 4.2-4.3 ppm and 8.2-8.3 ppm, corresponding to *CH*COO and CO*NH* of the underivatized polymer were observed in 4A1 and 4B1.

¹H NMR of poly(α -benzyl γ -glutamate) (5)

¹H NMR (400 MHz, DMSO-d₆) δ 1.75-1.86 (broad m, 1H, -*CH*₂CH₂CO-), 1.95-2.05 (broad m, 1H, -*CH*₂CH₂CO-), 2.23 (br t, 2H, J=7.6 Hz, -CH₂CH₂CO-), 4.27-4.33 (broad m, 1H, -*CH*COO), 5.10 (s, 2H, O*CH*₂C₆H₅), 7.32-7.34 (m, 5H, -C₆H₅), 8.19 (d, J=7.2 Hz,1H, -CONH).

Signal area *ratio* of the side-chain OCH_2 to the main-chain CH was 2, corresponding to 100% functionalization degree.

¹H NMR of poly(α -*n*-butyl γ -glutamate) (6)

¹H NMR (400 MHz, DMSO-d₆) δ 0.87 (t, J=7.2 Hz, 3H, -OCH₂CH₂CH₂CH₃), 1.26-1.38 (m, 2H, -OCH₂CH₂CH₂CH₃), 1.48-1.60 (m, 8H, -OCH₂CH₂CH₂CH₂CH₃), 1.69-1.83 (broad m, 1H, -*CH*₂CH₂CO-), 1.90-2.04 (broad m, 1H, -*CH*₂CH₂CO-), 2.16-2.26 (broad m, 2H, -CH₂CH₂CO-), 3.96-4.10 (m, 2H, -OCH₂CH₂CH₂CH₃), 4.14-4.26 (broad m, 1H, -*CH*COO), 8.24 (d, J=6.9 Hz,1H, -CONH).

Signal area *ratio* of the side-chain OCH_2 to the main-chain CH was 1.99, corresponding to 99% functionalization degree.