ELECTRONIC SUPPLEMENTARY INFORMATION

Role of *para*-substitution in controlling phosphatase activity of dinuclear Ni^{II} complexes of Mannich-base ligands: experimental and DFT studies[†]

Ria Sanyal,^{a,#} Xuepeng Zhang,^{b,#} Prateeti Chakraborty,^a Franz A. Mautner,^c Cunyuan Zhao,^{*,b} and Debasis Das^{*,a}

^aDepartment of Chemistry, University of Calcutta, 92 A.P.C. Road, Kolkata 700009, India. Fax: +913323519755; Tel: +913324837031; E-mail: <u>dasdebasis2001@yahoo.com</u>

^bMOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry and Chemical Engineering, Sun Yat-SenUniversity, Guangzhou 510275, P. R. China. Email: <u>ceszhcy@mail.sysu.edu.cn</u>.

^cInstitutfuer Physikalische und Theoretische Chemie, Technische Universitaet Graz, A-8010 Graz, Austria

Fig. S1 FTIR spectrum of ligand HL^1 in NaCl plate.

Fig. S2 FTIR spectrum of complex 1 in KBr pellet.

Fig. S3 FTIR spectrum of complex 2 in KBr pellet.

Fig. S4 FTIR spectrum of complex 3 in KBr pellet.

Fig. S5 FTIR spectrum of complex 4 in KBr pellet.

Fig. S6 FTIR spectrum of complex 5 in KBr pellet.

Fig. S7 Electronic spectra of complexes in DMSO of (A) 5×10^{-5} (M) where inset shows the same for 1×10^{-3} (M) and (B) 5×10^{-3} (M) solution at 298 K.

Fig. S8 Electronic spectra of the free ligands of 5×10^{-5} (M) in (A) DMSO and (B) 75% DMSO solution at 298 K. Inset shows the same for 10^{-3} (M) solution.

Fig. S9 Electronic spectra of complexes in 75% DMSO of 5×10^{-5} (M) solution at 298 K. Inset shows the same for 5×10^{-3} (M) solution.

Fig. S10 Packing plot of complex 2.

Fig. S11 Packing plot of complex 3.

Fig. S12 Packing plot of complex 4.

Fig. S13 ESI-MS of complex **3** in DMSO-acteonitrile as arepresentative of five Ni^{II} complexes: (A) simulated and experimental spectra (B) isotopic distribution pattern.

Fig. 14 Wavelength scan for the hydrolysis of 4-NPP in the absence and presence of complex 1 (substrate:catalyst = 20:1) in 75% DMSO (DMSO : pH 9 buffer = 3 :1) recorded at 25 °C at an interval of 10 min for 2 h. [4-NPP] = 1×10^{-3} (M), [Complex 1] = 0.05×10^{-3} (M). The arrow shows the change in absorbance with reaction time.

Fig. S15 Wavelength scan for the phosphatase activity of complex 2 in 75% DMSO (DMSO : pH 9 buffer = 3 :1). [4-NPP] = 1×10^{-3} (M), [Complex 2] = 0.05×10^{-3} (M).

Fig. S16 Wavelength scan for the Phosphatase activity of complex **3** in 75% DMSO (DMSO : pH 9 buffer = 3 :1). [4-NPP] = 1×10^{-3} (M), [Complex **3**] = 0.05×10^{-3} (M).

Fig. S17 Wavelength scan for the phosphatase activity of complex 4 in 75% DMSO (DMSO : pH 9 buffer = 3 :1). [4-NPP] = 1×10^{-3} (M), [Complex 4] = 0.05×10^{-3} (M).

Fig. S18 Wavelength scan for the phosphatase activity of complex **5** in 75% DMSO (DMSO : pH 9 buffer = 3 :1). [4-NPP] = 1×10^{-3} (M), [Complex **5**] = 0.05×10^{-3} (M).

Fig S19 Control experiment against phosphatase activity with ligand HL^1 in 75% DMSO (DMSO : pH 9 buffer = 3 :1) recorded after 2 hours.

Fig. S20 Interdependence of k_{cat} values with (A) Ni^{...}Ni separation and (B) Ni-O-Ni bond angle of previously reported dinuclear Ni^{II} complexes. Inset shows the same plot for our Ni^{II} complex 1-4 synthesised in this work.

Fig. S21 Depicted are the labels of the atoms in the active catalysis center.

Complex	Molar conductance Λ_M	Nature of electrolyte
	(μS)	
1	98	1:1
2	102	1:1
3	105	1:1

Table S1 Molar conductance values of complex 1-5 in DMSO at 298 K.

4	90	1:1
5	92	1:1

Complex	$10^4 V_{max}$	Standard	$10^3 K_M$	Standard	$10^{-4} k_{assoc}$	$10^{-3} k_{cat}/k_M$
	(M s ⁻¹)	error	(M)	error	(M ⁻¹)	$(M^{-1} s^{-1})$
1	3.33	8.62×10 ⁻⁴	5.22	0.016	0.019	1.28
2	14.5	1.17×10 ⁻³	30	0.001	33.33	0.97
3	40.3	0.745	69	9.72	0.014	1.17
4	3.04	1.14×10 ⁻⁴	5.62	0.003	0.018	1.08
5	4.1	8.92×10 ⁻⁴	7.6	0.018	0.013	1.08

 Table S2 Kinetic parameters for phosphatase activity of complex 1-5.

Table S3 First-order Rate Constants for the Hydrolysis of Various Phosphate Esters by Previously Reported Dinuclear Ni^{II}Complexes.^a

Complex	NiNi (Å) / Ni-O-Ni(°)	Substr ate	Condit ions	k_{cat} (s ⁻¹)	Ref
[Ni ₂ (LH ₂)(H ₂ O) ₂ (OH)(NO ₃)](NO ₃) ₃ L=Schiff-base	2.970/93.26	4-NPP	MeOH -H ₂ O (1:1)	2.0	28a
$[Ni_{2}(L^{1})(NCS)_{3}(H_{2}O)_{2}],$ $[Ni_{2}(L^{2})(CH_{3}COO)(NCS)_{2}(H_{2}O)],$ $[Ni_{2}(L^{3})(NCS)_{3}]$ $L^{1,2,3} = Schiff-base$	3.114/99.86 3.059/98.54 3.099/98.54	4-NPP	Water- acetoni trile (1:1)	0.841 0.942 0.742	28b
$[Ni_2L(\mu-OH)] (ClO_4)_2$ L = Schiff-base	-	BNPP	Water- ethanol (1:1)	1.49 ×10 ⁻⁴	4a
$[Ni_{2}L^{1,2}B](ClO_{4})_{4}$ $L^{1,2} = polyazamacrobicyclic$ B = bipy, phen	-	4-NPP	рН 7.2	(3.36-10.83) × 10 ⁻⁵	28c

$[Ni^{II}_{2}(L^{1})(O_{2}CMe)_{2}(H_{2}O)_{2}][PF_{6}]_{3}$	3.644/126.19	HPNP	MeOH	16.50×10^{-5}	36a
MeOH.3H ₂ O			-H ₂ O	E	
$[Ni^{n}_{2}(L^{2})(O_{2}CMe)_{2}(MeOH)(H_{2}O)][ClO_{4}]$	~3.364/112.78		(33%,	2.96×10^{-5}	
$L^{1,2} = Mannich-base$			v/v)		

^a BNPP= bis(4-nitrophenyl)phosphate; HPNP= 2-hydroxypropyl(4-nitrophenyl)phosphate

 Table S4 Cartesian coordinates of optimized structures.

Cl-1-H₂O-RC

Ni	2.00429	-1.86358	-0.3216
Ni	-0.22215	1.48401	-0.57682
0	1.39969	0.58473	-0.27997
Ν	2.29912	-1.77399	1.75411
Ν	3.9311	-1.67667	-0.75008
Ν	0.86464	2.74482	-1.69253
Ν	-1.89566	2.54928	-0.518
С	1.97892	1.30709	0.67701
С	2.38078	2.6287	0.37127
С	2.98789	3.42484	1.34004
Н	3.30084	4.44016	1.11256
С	3.20461	2.89568	2.61351
С	2.81102	1.59568	2.93145
Н	2.96815	1.22265	3. 93965
С	2.18478	0.78597	1.97627
С	1.62096	-0.56707	2.34807
Н	1.64916	-0.67349	3.44351
Н	0.57985	-0.61947	2.02446
С	1.61815	-2.97768	2.31474
Н	1.76127	-3.01667	3.40473
Н	2.02325	-3.88556	1.86414
Н	0.5581	-2.93079	2.0774
С	3.72381	-1.80089	2.17128
Н	3.77904	-2.07468	3.23591
Н	4.12844	-0.7906	2.072
С	4.57737	-2.76469	1.33851
Н	5.4953	-2.9925	1.89031
Н	4.05483	-3.71726	1.18874
С	4.93802	-2.15783	0.01005
С	6.26964	-2.05998	-0.40465
Н	7.05275	-2.46785	0.22657
С	6.57371	-1.44381	-1.61483
Н	7.60471	-1.35985	-1.94698

С	5.52799	-0.94198	-2.38685
Н	5.70853	-0.45795	-3.34101
С	4.22365	-1.08935	-1.92886
Н	3.36135	-0.78931	-2.51008
С	2.21209	3.06992	-1.06009
Н	2.39161	4.1463	-1.1527
Н	2.96714	2.5655	-1.67145
С	1.08513	1.9353	-2.93497
Н	0.12908	1.64085	-3.37
Н	1.61988	1.02614	-2.6608
Н	1.66547	2.52042	-3.66317
С	0.16562	4.01529	-2.02581
Н	0.74613	4.53525	-2.80233
Н	0.17449	4.64152	-1.12725
С	-1.2754	3.82962	-2.51303
Н	-1.58893	4.76038	-2.99726
Н	-1.34343	3.03808	-3.26791
С	-2.23582	3.51599	-1.3995
С	-3.44134	4.21244	-1.27519
Н	-3.6884	4.97466	-2.00713
С	-4.30696	3.92461	-0.22443
Н	-5.24771	4.45773	-0.12225
С	-3.93744	2.94277	0.69207
Н	-4.57062	2.67916	1.53219
С	-2.73169	2.27727	0.50881
Н	-2.41509	1.47932	1.16657
0	-0.62491	-3.70203	-2.99156
Н	-0.5879	-3.61784	-3.95481
Н	-1.0987	-2.90287	-2.6517
0	-2.25044	-2.16476	0.62663
Р	-1.12418	-1.375	-0.33508
0	-1.12618	0.06103	0.28285
0	0.11956	-2.21531	0.02336
0	-1.58676	-1.42131	-1.78665
С	-3.57306	-1.87795	0.7146
С	-4.26921	-1.06615	-0.19996
С	-4.25517	-2.45869	1.79949
С	-5.62357	-0.8225	-0.00995
Н	-3.75087	-0.65102	-1.05472
С	-5.6073	-2.219	1.98748
Н	-3.69902	-3.09446	2.48027
С	-6.28319	-1.39075	1.08351
Н	-6.17704	-0.20077	-0.70323
Н	-6.14439	-2.65578	2.8205
Ν	-7.69872	-1.11128	1.28808

-8.26885	-1.64979	2.24384
-8.26256	-0.34221	0.49902
1.76373	-2.00587	-2.12113
1.01046	-2.60077	-2.28922
-2.00199	0.69948	-3.48769
-1.84025	-0.05972	-2.86844
-2.42002	0.30262	-4.26586
0.04153	-5.10616	-0.46336
-0.15557	-5.03161	-1.41486
0.01584	-4.17317	-0.17897
3.97382	3.89539	3.8465
	$\begin{array}{c} -8.\ 26885\\ -8.\ 26256\\ 1.\ 76373\\ 1.\ 01046\\ -2.\ 00199\\ -1.\ 84025\\ -2.\ 42002\\ 0.\ 04153\\ -0.\ 15557\\ 0.\ 01584\\ 3.\ 97382\end{array}$	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$

Cl-1-H₂O-TS

Ni	1.6057	-2.02473	-0.01423
Ni	0.09661	1.4443	-0.90271
0	1.5803	0.43705	-0.31502
Ν	2.27823	-1.9218	1.86139
Ν	3.34707	-2.24389	-0.89145
Ν	1.29058	2.85311	-1.678
Ν	-1.52573	2.59848	-0.73477
С	2.30951	1.11336	0.57383
С	2.92197	2.32381	0.16495
С	3.7145	3.06826	1.03522
Н	4.1831	3.99204	0.70753
С	3.91742	2.59745	2.33085
С	3.33841	1.40098	2.75065
Н	3.50135	1.06304	3.77
С	2.52727	0.64237	1.89582
С	1.84401	-0.59115	2.44128
Н	2.01879	-0.64045	3. 52467
Н	0.76528	-0.54487	2.28956
С	1.5636	-2.9847	2.63681
Н	1.93466	-2.99206	3.67136
Н	1.73971	-3.96167	2.182
Н	0.49579	-2.77027	2.63803
С	3.74602	-2.10239	2.00027
Н	3.97772	-2.29944	3.05671
Н	4.23339	-1.16344	1.72614
С	4.30339	-3.23512	1.12813
Н	5.29466	-3.51131	1.50239
Н	3.67765	-4.13221	1.21534
С	4.42293	-2.82588	-0.31707
С	5.60994	-3.00289	-1.03323
Н	6.45727	-3. 47668	-0. 54798
С	5.69378	-2.56992	-2.354

Н	6.61128	-2.7049	-2.91953
С	4.58188	-1.95791	-2.93052
Н	4.59682	-1.60102	-3.95487
С	3.42833	-1.81521	-2.16866
Н	2.52113	-1.36899	-2.55888
С	2.73441	2.66854	-1.27959
Н	3.29416	3.57091	-1.55896
Н	3.10525	1.83676	-1.88484
С	1.16698	2.58311	-3.14294
Н	0.12236	2.56336	-3. 45251
Н	1.58239	1.59591	-3.34951
Н	1.72196	3.34006	-3.71681
С	0.87826	4.24388	-1.35351
Н	1.57685	4.9331	-1.85212
Н	0.99521	4.37481	-0.27295
С	-0.53853	4.60696	-1.79273
Н	-0.65363	5.68536	-1.6392
Н	-0.65189	4.44936	-2.87248
С	-1.6556	3.90526	-1.06212
С	-2.8173	4.61502	-0.75018
Н	-2.88801	5.66085	-1.03273
С	-3.86593	3.98377	-0.08624
Н	-4.77407	4.52875	0.1549
С	-3.71615	2.64726	0.26776
Н	-4.48584	2.09618	0.79693
С	-2.53685	1.99085	-0.06923
Н	-2.38224	0.94939	0. 18455
0	-0.3225	-4.42984	-2.53516
Н	-0.55001	-4.5598	-3. 46761
Н	-1.09404	-3.94757	-2.13192
0	-2.48505	-1.09411	0.85666
Р	-0.95798	-1.59166	-0.69155
0	-1.02711	-0.09096	-1.12333
0	-0.13758	-1.90254	0.6147
0	-1.87552	-2.57039	-1.37901
С	-3.79295	-1.11936	0.83232
С	-4.55719	-1.63719	-0.25705
С	-4.52014	-0.57152	1.93745
С	-5.93861	-1.59267	-0.24164
Н	-4.02098	-2.07883	-1.08763
С	-5.90119	-0.52919	1.95064
Н	-3.9519	-0.17372	2.77453
С	-6.6201	-1.0345	0.8543
Н	-6.51457	-1.98725	-1.07097
Н	-6.44264	-0.11083	2.79144

Ν	-8.05698	-0.97129	0.85352
0	-8.63146	-0.45956	1.83198
0	-8.67373	-1.42441	-0.12625
0	0.61841	-1.99353	-1.63335
Н	0.50045	-2.89351	-2.03129
0	-1.57793	0.85601	-3.70832
Н	-1.482	0.37218	-2.85611
Н	-2.33496	0.4466	-4.15205
0	-1.29501	-1.38747	3.36936
Н	-2.04481	-1.65165	3.92152
Н	-1.6636	-1.31526	2.45133
C1	4.91563	3.52365	3.44925

Cl-1-H₂O-PC

Ni	1.8054	-1.99461	-0.05027
Ni	0.14788	1.40181	-1.01272
0	1.67395	0.47333	-0.38879
Ν	2.2439	-1.87475	1.86917
Ν	3.63234	-2.13611	-0.73086
Ν	1.28889	2.89601	-1.70365
Ν	-1.54403	2.41237	-0.87498
С	2.25099	1.18263	0.58827
С	2.79258	2.45232	0.26853
С	3.43373	3.23221	1.22792
Н	3.85004	4.2012	0.96731
С	3.54962	2.74304	2.52733
С	3.02137	1.49876	2.86607
Н	3.09847	1.15299	3.89276
С	2.35893	0.70338	1.92056
С	1.68495	-0.56522	2.39115
Н	1.73969	-0.61101	3.48605
Н	0.62723	-0.57336	2.12907
С	1.4936	-2.97315	2.56182
Н	1.75196	-2.9678	3.62892
Н	1.75963	-3.93848	2.12623
Н	0.42423	-2.80026	2.45489
С	3.69429	-1.98716	2.1707
Н	3.8122	-2.16662	3.24821
Н	4.16431	-1.02749	1.94217
С	4.39757	-3.09858	1.38054
Н	5.35284	-3.32457	1.86538
Н	3.80988	-4.02497	1.40773
С	4.65791	-2.68863	-0.04573
С	5.91815	-2.82649	-0.6337
Н	6.72372	-3.27705	-0.06297

С	6.12765	-2.38243	-1.93661
Н	7.10324	-2.48658	-2.4024
С	5.06651	-1.79581	-2.62514
Н	5.18089	-1.42721	-3.63887
С	3.83554	-1.69234	-1.9895
Н	2.96784	-1.26034	-2.47299
С	2.70282	2.84094	-1.17486
Н	3.18936	3.80622	-1.36577
Н	3.21524	2.08108	-1.77114
С	1.31938	2.59267	-3.16762
Н	0.31183	2.47802	-3. 56797
Н	1.83695	1.64304	-3.31187
Н	1.8571	3.3858	-3.70782
С	0.7288	4.25073	-1.4529
Н	1.3845	4.98668	-1.94253
Н	0.77566	4.42645	-0.37319
С	-0.69419	4.45568	-1.97098
Н	-0.91231	5.52623	-1.8944
Н	-0.74774	4.2168	-3.04008
С	-1.76713	3.69981	-1.23018
С	-2.97607	4.32822	-0.93145
Н	-3.12431	5.35973	-1.23574
С	-3.97435	3.63393	-0.25
Н	-4.91917	4.1159	-0.01573
С	-3.72896	2.31942	0.12962
Н	-4.45566	1.72631	0.67396
С	-2.50613	1.73958	-0.19923
Н	-2.29832	0.7132	0.09001
0	0.14883	-4.43832	-2.73
Н	-0.00404	-4.62202	-3.6689
Н	-0.69835	-4.05271	-2.38222
0	-2.77175	-0.97467	1.24772
Р	-0.60131	-1.69825	-1.05234
0	-0.85077	-0.20251	-1.36771
0	-0.01628	-1.94425	0.37658
0	-1.57926	-2.66202	-1.65271
С	-4.05323	-1.05114	1.14705
С	-4.68325	-1.48949	-0.06989
С	-4.93411	-0.6648	2.2176
С	-6.05406	-1.5103	-0.20912
Н	-4.03394	-1.82106	-0.8754
С	-6.3061	-0.68535	2.07555
Н	-4.48473	-0.33746	3.15243
С	-6.88101	-1.09931	0.85757
Н	-6.5178	-1.84267	-1.13112

Н	-6.95935	-0.38315	2.8864
Ν	-8.30191	-1.09613	0.7038
0	-9.01077	-0.72572	1.66206
0	-8.79052	-1.45875	-0.38524
0	0.95523	-2.03426	-1.81052
Н	0.89172	-2.9386	-2.23387
0	-1.40065	0.86759	-3.91864
Н	-1.33723	0.35085	-3.08481
Н	-2.20469	0.55347	-4.35746
0	-1.26843	-1.34203	3.46212
Н	-1.88951	-1.49781	4. 18779
Н	-1.84598	-1.21152	2.65336
C1	4.36039	3.71089	3.7547

Table S5 Structural parameters and NPA atomic partial charge distribution of selectedreaction structures. The labels of the atoms are presented in Fig. S27.

Structural Parameters	Cl-1-H ₂ O-	Cl-1-H ₂ O -	Me-1-H ₂ O -	CHMe ₂ -1-	CMe ₃ -1-	OMe-1-H ₂ O
	RC	TS	TS	H_2O -TS	H_2O -TS	-TS
B(P-O1)	3.45	1.88	1.88	1.88	1.88	1.89
B(P-O5)	1.68	2.23	2.24	2.23	2.23	2.21
A(O1-P-O5)	140.5	165.8	165.7	165.8	165.9	165.8
D(O2-O3-O4-P)	-26.1	7.6	7.9	7.7	7.6	7.1
B(Ni1Ni2)	4.03	3.89	3.86	3.86	3.86	3.87
B(Ni1-O6)	2.52	2.48	2.47	2.47	2.47	2.47
A(Ni1-O6-Ni2)	132.0	125.1	124.3	124.1	124.6	124.7
Atomic Partial Charge	Cl-1-H ₂ O-	Cl-1-H ₂ O -	Me-1-H ₂ O -	CHMe ₂ -1-	CMe ₃ -1-	OMe-1-H ₂ O
	RC	TS	TS	H_2O -TS	H_2O -TS	-TS
C(P)	2.568	2.551	2.550	2.549	2.550	2.550
C(O1)	-1.034	-0.972	-0.972	-0.973	-0.972	-0.972
C(O2)	-1.107	-1.141	-1.142	-1.143	-1.143	-1.144
C(O3)	-1.121	-1.036	-1.035	-1.037	-1.037	-1.037
C(Nil)	0.820	0.777	0.776	0.773	0.776	0.772
C(Ni2)	0.822	0.872	0.864	0.859	0.865	0.860

C(O6)	-0.742	-0.749	-0.755	-0.788	-0.756	-0.788