Supporting Information

Decoration of upconversion nanoparticles@mSiO₂ core-shell nanostructures with CdS nanocrystals for excellent infrared triggered photocatalysis

Yao-Wu Li,^a Liang Dong,^b Chen-Xi Huang,^a Yan-Chuan Guo,^{*,c} Xian-Zhu Yang,^a Yun-Jun Xu,^{*,d} Hai-Sheng Qian^{*,a}

^a School of Biological and Medical Engineering, Hefei University of Technology, Hefei 230009, P. R. China.

^bTechnical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China. ^cDivision of Nanomaterials and Chemistry, Hefei National Laboratory for Physical Sciences at Microscale, Department of Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China.

^dDepartment of Radiology, Anhui Provincial Hospital, Hefei 230001, P. R. China

Fig. S1. (a, b) TEM images of NaYF₄:Yb/Tm@NaYF₄ core-shell nanoparticles.

Fig. S2. High resolution transmission electron microscopy (HRTEM) images of selected edge of the NaYF₄:Yb/Tm@NaYF₄@mSiO₂/CdS nanoparticle shown in Fig. 1d.

Fig. S3. X-rays diffraction pattern of the as-prepared NaYF₄:Yb/Tm@NaYF₄@mSiO₂/CdS nanoparticles obtained from the reaction of 0.16 mmol cadmium acetate and 0.32 mmol thiourea in the presence of 0.045 g NaYF₄:Yb/Tm@NaYF₄@SiO₂ after calcination at 500 °C for 2 h.

Fig. S4. Energy Dispersive X-ray analysis (EDX) of the as-prepared NaYF₄:Yb/Tm@NaYF₄@mSiO₂/CdS nanoparticles.

Fig. S5. X-ray photoelectron spectra (XPS) of the as-prepared NaYF₄:Yb/Tm@NaYF₄@mSiO₂/CdS obtained from the reaction of 0.16 mmol cadmium acetate and 0.32mmol thiourea in the presence of 0.045g NaYF₄:Yb/Tm@NaYF₄@SiO₂ after calcination at 500 °C for 2 h : (a) survey spectrum; (b) Na 1s; (c) F 1s; (d)Y3p; (e) O1s; (f) Si2p; (g)S2p; (h)Cd3d.

Fig. S6.TEM images of NaYF₄:Yb/Tm@NaYF₄@mSiO₂/CdS nanoparticles with different thickness of silica layers: 3nm (a); 7 nm (b); (c) TEM images of the NaYF₄:Yb/Tm@NaYF₄@mSiO₂/CdS obtained from 0.32 mmol cadmium acetate and 0.64 mmol thiourea.

Fig. S7. Fluorescence spectra of the as-prepared $NaYF_4$:Yb/Tm@NaYF4@mSiO₂, NaYF₄:Yb/Tm@NaYF4@mSiO₂/CdS obtained from 0.16 mmol Cd(Ac)₂ and 0.32 mmol thiourea and NaYF4:Yb/Tm@NaYF4@mSiO₂/CdS obtained from 0.32 mmol Cd(Ac)₂ and 0.64mmol thiourea.

Element	Weight %	Atomic %
С	14.64	36.73
0	11.10	20.91
F	6.31	10.02
Na	2.42	3.18
S	3.15	2.96
Si	25.56	16.09
Y	15.86	5.38
Cd	11.51	3.09
Tm	2.01	0.36
Yb	7.44	1.30
Totals	100	