Supporting Information

Synthesis of highly branched poly(δ -valerolactone)s: A comparative study

between comb and linear analogues

Yingying Ren, Zhiyong Wei, Tong Wu, Yufei Bian, Xuefei Leng, Cheng Zhou, and Yang Li*

State Key Laboratory of Fine Chemicals, Department of Polymer Materials, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China

Table S1. Molecular weight and degree of epoxidation of macroinitiators

sample	$M_{n}^{a}(Da)$	$M_{\rm w}^{\rm a}$ (Da)	Đa	$E^{b}(mol\%)$
L-HPB	6100	6600	1.08	23.7
S-HPB	12400	13800	1.11	12.3

^aMeasured by GPC in THF. ^bDegree of epoxidation. Measured by ¹H NMR in CDCl₃.

Figure S1. ¹H-NMR spectra of polybutadiene, epoxidized polybutadiene (E 23.7 mol %), and hydroxylated polybutadiene.

^{*} Corresponding author.

E-mail address: liyang@dlut.edu.cn (Y. Li).

Figure S2. GPC curves of linear and star hydroxylated polybutadienes.

Figure S3. GPC curves of (a) linear poly(δ -valerolactone)s, (b) star poly(δ -valerolactone)s, (c) linear-comb poly(δ -valerolactone)s, and (d) star-comb poly(δ -valerolactone)s.

Figure S4. GPC curves of LC-PVLs synthesized with different catalyst loadings.

Figure S5. (a) Crystallization curves of SC-PVLs with different side chain length. (b) Melting curves of SC-PVLs with different side chain length.

Table 52. Thermal parameters of SC-1 VLS with different side chain length							
sample	M _n ^a (KDa)	$M_{\rm n}^{\rm *b}$ (Da)	$T_{\rm m}(^{\rm o}{\rm C})$	$\Delta H_{\rm m} \left({\rm J/g} \right)$	$T_{\rm c}$ (°C)	$\Delta H_{\rm c} ({\rm J/g})$	
6-1	71	4500	54.3	70.9	29.4	70.6	
6-2	147	5700	55.9	78.4	30.9	79.6	
6-3	134	6600	56.1	80.9	34.2	85.9	

Table S2. Thermal parameters of SC-PVLs with different side chain length

^aMeasured by GPC in THF.

 ${}^{b}M_{n}$ * means the molecular weight of single arm. Measured by ¹H NMR in CDCl₃.

Figure S6. WAXD patterns of SC-PVLs with different side chain length.

Table S3. Crystallite size of $L_{\rm 110}$ and $L_{\rm 200}$ and crystallinity of SC-PVLs with different side chain length

sample	$M_{\mathrm{n}}^{*\mathrm{a}}\left(\mathrm{Da} ight)$ -	L ₁₁₀			L ₂₀₀			Y d(0/2)
		$2\theta^{\mathrm{b}}$	β^{c}	$d_{\rm hkl}(\rm nm)$	$2\theta^{\mathrm{b}}$	β^{c}	$d_{\rm hkl}(\rm nm)$	$\Lambda_{\rm C}$ (70)
6-1	4500	21.65	0.375	22.4	24.28	0.638	12.9	71.2
6-2	5700	21.60	0.413	22.1	24.24	0.696	12.3	75.3
6-3	6600	21.66	0.379	20.2	24.32	0.640	11.8	78.6

 ${}^{a}M_{n}$ * means the molecular weight of single arm. Measured by ${}^{1}H$ NMR in CDCl₃.

^bBragg angle.

^cMeasured half-width of the experimental profile.

^dCrystallinities were measured by XRD.