Supporting Information

Carboxyfullerene decorated titanium dioxide nanomaterials for reactive oxygen species scavenging activities

Kai-Cheng Yang,^a Jia-Huei Zheng,^b Yen-Ling Chen,^{*a} Kuen-Chan Lee, ^{*c} and Er-

Chieh Cho,*b

^aDepartment of Fragrance and Cosmetic Science, Kaohsiung Medical University, Kaohsiung, Taiwan

^bDepartment of Clinical Pharmacy, School of Pharmacy, College of Pharmacy, Taipei Medical University, Taipei 110, Taiwan

^cDepartment of Science Education, National Taipei University of Education, Taipei 106, Taiwan

a,*Corresponding author. E-mail: yelichen@kmu.edu.tw (Y.-L. Chen) Tel: +886-7-

3121101 ext 2584

b,*Corresponding author. E-mail: echo@tmu.edu.tw (E.-C. Cho) Tel: +886-2-

27361661 ext 6179

c,*Corresponding author. E-mail: kclee@tea.ntue.edu.tw (K.-C. Lee) Tel: +886-2-

27321104 ext 53461

Optical Spectra

Figure S1 displays the UV-vis diffuse reflectance spectra of TiO_2 and their composites. It can be seen that all of TiO_2 nanomaterials contained C_{70} -COOH increase the light absorbance in the visible light region. In addition, the absorbance effects are higher and higher with the addition amounts of C_{70} -COOH in 1% to 10% (w/w). Furthermore, a qualitative red shift to higher wavelength is observed in the edge of both P25 composites and TNR composites due to the electron interactions between TiO₂ and C_{70} -COOH [1].

Figure S1. UV-vis diffuse reflectance spectra of (a) P25 and P25/C₇₀-COOH composites (b) TNR and TNR/C₇₀-COOH composites.

Reference:

 H. Fu, T. Xu, S. Zhu, Y. Zhu, *Environmental science & technology*, 2008, 42, 8064.