Supplementary material

Tailoring the electronic properties among oxoarsine, arsinoyl and arsine oxide isomers: the simplest molecular systems with an arsenic-oxygen bond

Rommel B. Viana*

Departamento de Química e Física Molecular, Instituto de Química de São Carlos, Universidade de São Paulo, São Carlos-SP, Brasil.

* Corresponding author: E-mail: rommelbv@yahoo.com.br

Av. Trabalhador São Carlense, 400 (caixa-postal: 780). Bairro: Centro. CEP: 13560970 - São Carlos, SP - Brazil.

Table S1. Relative energy gap (in kcal mol⁻¹) among the HAsO isomers

Method	i1	i2	i3	i4
CCSD(T)/CBS	0.0	37.4	18.0	1.2
QCISD(T,Full)/aug-cc-pVQZ	0.0	37.4	19.8	2.8
G4*	0.0	39.8	16.8	2.3
G4MP2*	0.0	40.2	17.1	2.4
G4	0.0	37.5	14.6	-2.2
G4MP2	0.0	39.8	14.8	-2.2

Table S2. The zero-point vibrational energy (ZPVE, in kcal mol⁻¹) obtained with three different methodologies among the $AsOH_n$ isomers (n=0-3)

			$\Delta_{\text{ZPVE}(\text{QCISD-})}$	B3LYP/cc-	$\Delta_{\text{ZPVE}(\text{QCISD-})}$
Radical	QCISD	G4	G4)	pVTZ	B3LYP)
AsO	1.42	1.42	0.00	1.44	-0.02
i1	5.62	7.6	-1.97	5.40	0.23
i2	4.97	4.69	0.28	4.68	0.28
i3	8.05	7.78	0.27	7.86	0.19
i4	7.89	5.36	2.53	7.68	0.21
i5	12.81	12.33	0.48	12.43	0.38
i6	13.08	12.59	0.49	12.70	0.37
i7	10.98	14.95	-3.97	10.47	0.51
i8	15.41	10.37	5.04	18.02	-2.61
i9	17.75	18.01	-0.26	16.88	0.88
i10	18.83	17.96	0.87	18.13	0.7
i11	18.83	16.65	2.17	18.08	0.74
i12	20.11	19.45	0.66	19.59	0.52
i13	20.11	19.4	0.71	19.56	0.55

Table S3. Calculated and experimental vibrational frequencies (in cm⁻¹) of HAsO (i1), as well as the mean unassigned error (MUE) and mean absolute error (MAE) in to the prediction of the frequencies

Method	ν ₁	ν_2	v ₃	reference	MUE	MAE
QCISD/cc-pVTZ	881.2	988.2	2064.5	This study	78	37
B3LYP/cc-pVTZ	853.2	979.7	1942.4	This study	25	12
G4	728.0	1011.5	3783.1	This study	607	830
B3LYP/aug-cc-pV5Z	849	974	1970	[53]	31	10
CCSD(T)/aug-cc-pV5Z	864	961	2027	[53]	51	30
Experimental	832.4	937.0	1931.0	[53]		

Method	v ₁	v ₂	v ₃	ν ₄	v ₅	v ₆	Reference	MUE	MAE
QCISD/cc-pVTZ	535.33	746.85	867.11	1010.01	2244.31	2275.3	This study	81	70
B3LYP/cc-pVTZ	546.39	720.72	843.5	980.62	2098.68	2135.03	This study	34	21
G4	547.74	719.79	843.56	981.98	2115.83	2151.83	This study	39	27
B3LYP/6-311G(d,p)	519	717	806	994	2100	2137	[51]	22	41
QCISD/6-311G(d,p)	497	741	807	1032	2203	2224	[51]	51	82
CCSD(T)/6-311G(d,p)	454	733	812	1021	2178	2204	[51]	33	82
CCSD/6-311G(d,p)	451	754	808	1039	2214	2234	[51]	45	97
B3LYP/6-311++G(3df,3pd)	538	716	843	978	2105	2144	[51]	33	25
QCISD/6-311++G(3df,3pd)	520	735	859	994	2203	2229	[51]	61	60
CCSD(T)/6-311++G(3df,3pd)	507	712	875	973	2174	2206	[51]	49	51
CCSD/6-311++G(3df,3pd)	499	743	880	1003	2239	2267	[51]	72	72
B3LYP/aug-cc-pVTZ	541	717	841	975	2105	2144	[51]	33	26
QCISD/aug-cc-pVTZ	524	738	863	1003	2235	2272	[51]	73	70
CCSD(T)/aug-cc-pVTZ	515	705	878	981	2204	2244	[51]	61	60
CCSD/aug-cc-pVTZ	485	750	883	1014	2260	2302	[51]	77	80
Experimental	525.7		838.7	946.1	2022.9		[52]		

Table S4. Calculated and experimental vibrational frequencies (in cm^{-1}) of H₂AsO (i7), as well as the mean unassigned error (MUE) and mean absolute error (MAE) in to the prediction of the frequencies

Table S5. Energetic profile (in kcal mol⁻¹) among the H₂AsO isomers

Reaction	CCSD(T)/CBS	ROCCSD(T)/aug-cc-pVQZ	UCCSD(T)/aug-cc-pVQZ
i5	0.5	0.5	0.5
TS4	3.1	3.1	3.1
i6	0.0	0.0	0.0
TS3	53.7	53.8	53.9
i7	28.8	29.3	29.2
TS5	58.4	57.8	57.9
i8	47.5	46.8	46.8
TS6	55.9	56.4	56.3
AsO+H ₂	27.4	26.5	27.1

Table S6. Relative energy gap (in kcal mol⁻¹) among the H₂AsO isomers

Method	i6	i5	i7	i8
CCSD(T)/CBS	0.0	0.5	28.8	47.5
ROCCSD(T)/aug-cc-pVQZ	0.0	0.5	29.3	46.8
UCCSD(T)/aug-cc-pVQZ	0.0	0.5	29.2	46.8
G4*	0.0	0.4	28.2	47.0
G4MP2*	0.0	0.4	28.5	48.0
G4	0.0	0.4	32.7	42.4
G4MP2	0.0	0.4	32.9	43.4

Table S7. Arsenic [q(As)] and oxygen [q(O)] partial atomic charge by different population methodologies

Molecule	NP	PA	QTA	AIM	CHI	ELP	CHE	LPG	М	K	CN	А5
	q(As)	q(0)										
AsO	0.88	-0.88	0.95	-0.95	0.36	-0.36	0.35	-0.35	0.34	-0.34	0.30	-0.30
i1	1.07	-0.89	1.32	-0.98	0.41	-0.37	0.40	-0.38	0.38	-0.37	0.38	-0.32
i2	0.61	-0.57	0.90	-0.70	0.20	-0.24	0.16	-0.23	0.14	-0.22	0.18	-0.19
i3	0.44	-0.93	0.52	-1.10	0.10	-0.29	0.04	-0.35	0.03	-0.36	0.07	-0.24
i4	0.51	-0.99	0.56	-1.14	0.15	-0.41	0.10	-0.43	0.09	-0.44	0.12	-0.28
i5	0.62	-0.95	0.88	-1.14	0.21	-0.49	0.12	-0.45	0.10	-0.46	0.17	-0.28
i6	0.58	-0.94	0.86	-1.13	0.19	-0.30	0.04	-0.49	0.02	-0.51	0.15	-0.27
i7	0.89	-0.74	1.39	-0.87	0.29	-0.35	0.26	-0.34	0.22	-0.32	0.30	-0.29
i8	-0.16	-0.86	-0.10	-1.15	-0.30	-0.11	-0.28	-0.42	-0.29	-0.46	-0.27	-0.13
i9	1.26	-1.02	1.94	-1.11	0.96	-0.66	0.79	-0.60	0.62	-0.56	0.43	-0.43
i10	0.66	-0.96	1.19	-1.15	0.30	-0.52	0.04	-0.49	-0.01	-0.52	0.21	-0.30
i11	0.71	-0.97	1.23	-1.16	0.18	-0.46	0.16	-0.48	0.13	-0.48	0.23	-0.30
i12	-0.09	-0.84	0.21	-1.15	-0.23	-0.17	-0.32	-0.54	-0.35	-0.58	-0.21	-0.13
i13	-0.06	-0.84	0.23	-1.15	-0.25	-0.16	-0.25	-0.43	-0.27	-0.47	-0.19	-0.13

Table S8. Linear correlation between the v(As-O) frequencies and δq [q(As)-q(O)] using the vibrational frequencies calculated with QCISD/cc-pVTZ and B3LYP/cc-pVTZ

		B3LY
Method	QCISD	Р
NPA	0.832	0.795
QTAIM	0.531	0.483
CHELP	0.692	0.648
CHELPG	0.618	0.600
MK	0.662	0.642
CM5	0.896	0.855

Table S9. Bond order analysis with bond delocalization index (bo_{bdi}), natural resonance theory bond index (bo_{nrt}), Mayer bond index (bo_{mayer}), Wiberg bond index (bo_{wi}), atom-atom overlap natural atomic orbital bond index (bo_{nao}), and atomatom overlap natural localized molecular orbitals/natural population analysis bond index (bo_{nlmo})

Molecule	bo _{wi}	bo _{bdi}	bo _{mayer}	bo _{nrt}	bo _{nao}	bo _{nlmo}
AsO	1.59	1.76	2.03	1.50	0.99	1.12
i1	1.63	1.75	2.08	2.03	0.93	1.08
i2	1.03	1.09	1.26	1.82	0.74	0.86
i3	0.97	1.30	1.25	2.00	0.66	0.57
i4	0.74	1.02	1.20	1.52	0.61	0.5
i5	0.76	0.94	1.01	1.49	0.59	0.52
i6	0.77	0.97	1.02	1.50	0.59	0.53
i7	1.15	1.16	1.52	1.50	0.88	1.24
i8	0.31	0.63	0.39	1.00	0.27	0.17
i9	1.21	1.31	1.86	1.13	1.21	0.82
i10	0.77	0.93	1.04	1.02	0.58	0.49
i11	0.76	0.90	1.02	1.01	0.58	0.48
i12	0.34	0.58	0.40	1.00	0.28	0.18
i13	0.34	0.94	0.39	1.00	0.28	0.18

Table S10. Linear correlation between the v(As-O) frequencies and As-O bond order indexes using the vibrational frequencies calculated with QCISD/cc-pVTZ and B3LYP/cc-pVTZ

Method	QCISD	B3LYP
bo _{wi}	0.88	0.92
bo _{wi} bo _{bdi}	0.68	0.74
bo _{maver}	0.94	0.97
bo _{nrt}	0.28	0.28
bo _{nao}	0.9	0.91
bo _{nlmo}	0.77	0.81

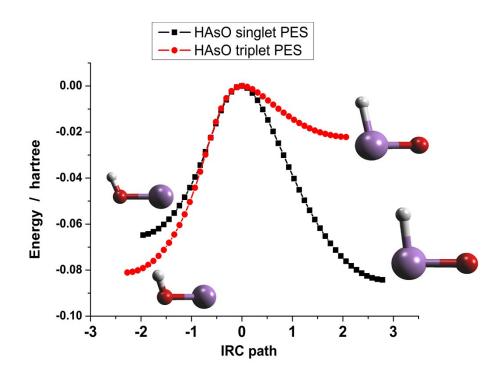


Figure S1. The HAsO singlet and triplet potential energy surfaces obtained by IRC calculations

HAsO (i1) Charge = 0 Multiplicity = 1

As,0,-0.0000045462,0,0.0099762376 H,0,0.0047569384,0.,1.5595289234 O,0,1.5917954707,0.,-0.3324163068

HAsO (i2) Charge = 0 Multiplicity = 3 As,0,0.0017654856,0.,0.0100144732 H,0,0.0015720984,0.,1.5293449005 O,0,1.7260067256,0.,-0.1131522037

AsOH (i3) Charge = 0 Multiplicity = 1 As,0,0.0057652286,0.,0.0135137781 O,0,-0.0030148675,0.,1.7748725332 H,0,0.9016779412,0.,2.0994947547

AsOH (i4) Charge = 0 Multiplicity = 3 As,0,0.0075583598,0.,0.0158967372 O,0,-0.0050710254,0.,1.796593505 H,0,0.888626577,0.,2.1475483211

cis-HAsOH (i5) Charge = 0 Multiplicity = 2 O,0,0.0085349568,0.,-0.001854195 H,0,0.0197651601,0.,0.9563838445 As,0,1.6645542046,0.,-0.6658984035 H,0,2.3966424818,0.,0.6698477101

trans-HAsOH (i6) Charge = 0 Multiplicity = 2 O,0,0.0037431526,0.,-0.0070136442 H,0,0.0122314714,0.,0.9527251952 As,0,1.6947643332,0.,-0.5863897692 H,0,1.2612699153,0.,-2.0361776939

H₂AsO (i7) Charge = 0 Multiplicity = 2 As,0,0.0078297497,0.0025357286,0.0066481335 H,0,0.0025625199,0.0016311143,1.5153026995 H,0,1.4956647764,0.0016311142,-0.243178359 O,0,-0.5720119592,1.4990509633,-0.4856875444

AsOH₂ (i8) Charge = 0 Multiplicity = 2 O,0,0.0007625715,0.002991846,-0.002070777 H,0,-0.0012883083,-0.0051807424,0.9580972878 As,0,2.0367855924,-0.0006914342,-0.6939020206 H,0,-0.4289342617,-0.8033543874,-0.2972996581 H₃AsO (i9) Charge = 0 Multiplicity = 1 As,0,0.0027463138,-0.0035704209,0.0022326112 H,0,0.0008302844,-0.0010794341,1.5023816713 H,0,1.4709019074,-0.0010794341,-0.3059394618 H,0,-0.3763332246,-1.4219447565,-0.3059394618 O,0,-0.8847886144,1.1502938295,-0.7192874156

trans-H₂AsOH (i10) Charge = 0 Multiplicity = 1 As,0,0.0059179462,0.0142654137,0.0057964852 H,0,-0.0055554816,0.005768046,1.5176208564 H,0,1.5171818571,0.0057683766,-0.0369371674 O,0,-0.1895090286,1.7856424577,-0.1856289278 H,0,-0.8658495925,1.9306632458,-0.8481289229

cis-H₂AsOH (i11) Charge = 0 Multiplicity = 1 As,0,0.0080455474,0.0102366288,0.0079751325 H,0,-0.0035327368,0.0121397871,1.5261731125 H,0,1.5260825937,0.012139291,-0.0169779695 O,0,-0.2814601854,1.7484861434,-0.2789918003 H,0,0.279491381,2.2907183269,0.2770376719

trans-HAsOH₂ (i12) Charge = 0 Multiplicity = 1 As,0,0.0000547496,-0.0000888037,0.0035094897 O,0,-0.0031400954,0.0050338441,2.1460730568 H,0,0.9098252013,0.0016345158,2.4445473747 H,0,-0.4017854838,-0.8163060153,2.4445471789 H,0,-0.798591697,1.2805819815,0.087799336

cis-HAsOH₂ (i13) Charge = 0 Multiplicity = 1 As,0,0.0051914365,-0.0000048607,0.0034367311 H,0,0.0259802675,0.0000064292,1.5231707609 O,0,2.140327308,0.0000012506,0.0971261397 H,0,2.4250155092,-0.7731079562,0.5910565444 H,0,2.4250108602,0.7731140823,0.591053542

TS1

Charge = 0 Multiplicity = 1 As,0,0.0066094458,0.,-0.0006522718 O,0,0.0045907552,0.,1.7616531549 H,0,1.1682568582,0.,1.0706096719

TS2

Charge = 0 Multiplicity = 3 As,0,0.0104966412,0.,0.0101824566 O,0,-0.0024553593,0.,1.7682569622 H,0,1.2499892501,0.,1.0021929019

TS3

Charge = 0 Multiplicity = 2 O,0,0.0066150191,-0.0029632787,0.009042428 As,0,0.0084646311,-0.0091157097,1.7853056836 H,0,1.5158846705,0.0015338355,2.0314442577 H,0,-0.0265669897,-1.2373243468,0.7796590656

TS4

Charge = 0 Multiplicity = 2 O,0,0.0043571425,-0.0035786568,-0.0075988618 H,0,0.017568027,-0.006913802,0.9512371918 As,0,1.6647134786,-0.0049554889,-0.6703483045 H,0,1.8053638607,-1.5177284488,-0.8114113375

TS5

Charge = 0 Multiplicity = 2 O,0,-0.0081169363,0.0034013799,-0.0066502603 H,0,0.0170101964,-0.0071228129,0.9579625114 As,0,1.9720015926,-0.0069508439,-0.5955390842 H,0,0.6572474716,-0.9909433775,-0.4233301166

TS6

Charge = 0 Multiplicity = 2 As,0,-0.0009634917,-0.0002507844,-0.0023092117 H,0,0.0388944319,-0.0030123802,1.6355042711 H,0,1.1350652421,-0.0030124058,1.178140014 O,0,-0.0926428438,-1.662253478,-0.2220382038 TS7

Charge = 0 Multiplicity = 1 As,0,0.0066775684,0.011255398,0.0063731429 H,0,-0.002341021,0.0058425709,1.5210236359 H,0,1.5263268892,0.0144500193,-0.0148788572 O,0,-0.2604303653,1.7797657296,-0.1647448401 H,0,0.4136745764,2.1608191111,-0.7281160386

TS8

Charge = 0 Multiplicity = 1 As,0,-0.0003735422,0.003703995,0.0180067085 O,0,-0.009793204,-0.0011401704,2.0784035478 H,0,0.9238594542,0.0033008186,2.3199102892 H,0,-1.4689594093,-0.3390165901,0.0507612888 H,0,-0.1501094521,1.0045790787,1.3152394932

TS9

 $\begin{array}{l} Charge = 0 \ Multiplicity = 1 \\ As,0,0.005518864,0.0100831698,0.0045813007 \\ H,0,0.0009124477,-0.0048468809,1.5105881455 \\ H,0,1.4849423783,-0.0048469864,-0.2771702167 \\ H,0,-1.1588680057,0.1831387045,-0.9619838951 \\ O,0,-0.8296001932,-1.3291110331,-0.6886564367 \end{array}$

TS10

Charge = 0 Multiplicity = 1 As,0,-0.0000928277,-0.0032831918,-0.0049715555 O,0,-0.0000761969,-0.0028022037,2.1085182242 H,0,0.7875709568,-0.0047497011,2.6500894659 H,0,-0.7866822921,0.0376878635,2.6500924466 H,0,-0.0408803282,-1.5161888832,0.063015776

TS11

Charge = 0 Multiplicity = 1 As,0,0.0073161452,0.0120178103,0.0043249967 O,0,0.0024164308,0.0032551081,1.7016318599 H,0,1.5011741099,0.0148448373,-0.3709956718 H,0,0.3182857555,1.3177290457,1.0755057992 H,0,0.3630112701,1.7871061032,0.2530219038

TS12

Charge = 0 Multiplicity = 1 As,0,0.0011123666,0.0030820137,0.0024899176 H,0,0.0012644501,-0.0054551893,1.5097835406 H,0,1.5117722553,-0.0198692028,-0.2629822475 H,0,1.309426214,-0.9950141349,0.5788700681 O,0,-1.0642610802,-0.9467520163,-0.7852076427

TS13 Charge = 0 Multiplicity = 1As O,1,B1 H,1,B2,2,A1 H,2,B3,1,A2,3,D1,0 H,1,B4,2,A3,4,D2,0 Variables: B1=1.71011221 B2=1.56652061 B3=1.49821411 B4=1.86438785 A1=104.18370376 A2=65.211218 A3=82.1302687 D1=76.66567853 D2=-2.10201119 **TS14** Charge = 0 Multiplicity = 1As H,1,B1 H,1,B2,2,A1 H,1,B3,2,A2,3,D1,0 O,1,B4,2,A3,4,D2,0 Variables:

B1=1.52605045

B2=1.54737182

B3=1.76197489

B4=1.63886162

A1=100.54755909

A2=70.22446342

A3=119.05804965

D1=37.74183371 D2=100.76629796