Electronic Supplementary Material (ESI) for RSC Advances. This journal is © The Royal Society of Chemistry 2016

Supporting information for

Enzyme mediated biomass pretreatment and hydrolysis: a biotechnological venture towards bioethanol production

Rajiv Chandra Rajak^a and Rintu Banerjee^{b*}

 ^aAdvanced Technology and Development Centre,
 *Agricultural & Food Engineering Department, Indian Institute of Technology, Kharagpur, Kharagpur- 721302, West Bengal, India

SUPPLEMENTARY TABLES AND FIGURES

(A) Fig. S1 One variable at a time approach (OVAT) for enzymatic delignification/pretreatment

Effect of solid loading on enzymatic delignification	Page S3
Effect of incubation time on enzymatic delignification	Page S3
Effect of temperature on enzymatic delignification	Page S4
Effect of pH on enzymatic delignification	Page S4
Effect of enzyme concentration on enzymatic delignification	Page S5
(B) Fig. S2 One variable at a time approach (OVAT) for enzymatic hydrolysis	
(B) Fig. S2 One variable at a time approach (OVAT) for enzymatic hydrolysis Effect of solid loading on enzymatic hydrolysis	Page S6
(B) Fig. S2 One variable at a time approach (OVAT) for enzymatic hydrolysis Effect of solid loading on enzymatic hydrolysis Effect of incubation time on enzymatic hydrolysis	Page S6 Page S6
 (B) Fig. S2 One variable at a time approach (OVAT) for enzymatic hydrolysis Effect of solid loading on enzymatic hydrolysis Effect of incubation time on enzymatic hydrolysis Effect of temperature on enzymatic hydrolysis 	Page S6 Page S6 Page S7

Effect of enzyme concentr	ration on enzymatic	hvdrolvsis	Page S8
Lifeet of enzyme concent	anon on enzymane	, iiyuloiysis	1 450 50

(C) Table S1: CCD based experimental designs for enzymatic pretreatment	Page S9-S10
(D) Table S2: CCD based experimental designs for enzymatic hydrolysis	Page S11-S12
(E) Table S3: DSC temperature program	PageS13
(F) Table S4: ANOVA analysis for enzymatic pretreatment	PageS13
(G) Table S5: ANOVA analysis for enzymatic hydrolysis	Page S14
(H) Fig. S3 UV-spectra (a) pretreated liquid (b) standard Kraft lignin	Page S14
(I) Fig. S4 Response surface plots for enzymatic delignification	Page S15
(J) Fig. S5 Response surface plots for enzymatic hydrolysis	Page S16
(K) Fig. S6 SEM images for (a) raw substrate (b) pretreated substrate	Page S17
(L) Fig. S6c FT-IR spectra for raw and pretreated substrate	Page S17
(M) Fig. S7 XRD for raw and pretreated substrate	Page S18

Fig. S1 (a) Effect of solid loading on enzymatic delignification

Fig. S1 (b) Effect of incubation time on enzymatic delignification

Fig. S1 (c) Effect of temperature on enzymatic delignification

Fig. S1 (d) Effect of pH on enzymatic delignification

Fig. S1 (e) Effect of enzyme concentration on enzymatic delignification

(B) One variable at a time approach (OVAT) for enzymatic hydrolysis

Fig. S2 (a) Effect of solid loading on enzymatic hydrolysis

Fig. S2 (b) Effect of incubation time on enzymatic hydrolysis

Fig. S2 (c) Effect of temperature on enzymatic hydrolysis

Fig. S2 (d) Effect of pH on enzymatic hydrolysis

Fig. S2 (E) Effect of enzyme concentration on enzymatic hydrolysis

Predicted E 1 20 6 40 7 3000 75.01 2 20 6 35 6 3500 72.23 3 20 5 40 7 3000 73.80	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	xperimental
2 20 6 35 6 3500 72.23 3 20 5 40 7 3000 73.80	79.80
3 20 5 40 7 3000 73.80	72.83
	73.59
4 15 6 40 7 3000 72.20	72.83
5 20 6 40 7 3000 75.01	79.80
6 15 5 35 8 3000 71.75	72.83
7 20 6 40 7 3000 75.01	79.80
8 25 7 35 7 3000 72.04	70.48
9 20 6 40 8 3500 59.34	59.28
10 15 7 45 7 3000 80.09	80.02
11 25 6 40 6 3500 59.98	60.24
12 25 5 35 7 3000 71.04	70.18
13 15 7 45 8 2500 70.46	70.26
14 25 5 35 6 2500 73.02	73.10
15 15 5 35 8 3000 63.03	63.18
16 20 7 40 7 3500 73.65	72.18
17 20 6 40 8 3500 79.50	79.28
18 25 7 35 8 3500 71.86	71.98
19 20 6 40 8 2500 74.62	74.58
20 15 7 35 8 2500 63.55	63.18

 Table S1
 Central composite design based experimental designs (variables and responses) for enzymatic pretreatment of Kans grass in terms of coded level of variables

21	15	5	45	7	3000	75.01	73.46
22	20	6	40	7	3000	75.01	79.80
23	20	6	45	6	3500	73.28	73.72
24	20	6	40	6	2500	62.14	62.42
25	20	6	40	6	3500	75.85	76.10
26	25	7	45	6	3000	74.27	72.26
27	25	5	45	6	3000	77.71	77.62
28	15	7	35	7	3000	75.01	73.68
29	20	6	40	6	2500	79.93	80.16
30	15	5	45	8	2500	71.67	71.26
31	25	5	45	7	2500	74.88	75.42
32	25	7	45	7	2500	77.41	76.68

Run	Solid	Incubation	Temperature	pН	Enzyme	Reducing Sugar	
Order	Loading (%)	Time (h)	(° C)		Concentration	(mg/g of	f substrate)
					(IU/g)	Predicted	Experimental
1	25	5	50	5	60	461.44	479.89
2	30	4	55	6	40	187.63	190.48
3	30	4	45	6	80	152.54	155.87
4	25	6	50	5	60	380.55	377.60
5	20	6	55	6	40	104.56	105.83
6	20	6	45	6	80	97.279	103.02
7	25	5	50	5	40	280.53	278.10
8	25	5	50	5	60	461.44	479.89
9	20	4	45	4	80	353.26	358.10
10	20	4	55	6	80	396.84	401.68
11	30	6	45	4	80	97.52	101.25
12	25	5	50	5	80	341.08	336.85
13	25	5	50	5	60	461.44	479.89
14	20	4	45	6	40	103.94	108.81
15	20	5	50	5	60	322.72	320.32
16	30	6	55	4	40	296.58	299.83
17	30	4	55	4	80	109.20	112.02
18	25	5	50	6	60	416.57	412.23
19	30	5	50	5	60	316.71	310.45
20	25	5	50	5	60	461.44	479.896
21	25	5	55	5	60	334.74	332.42
22	25	5	50	5	60	461.44	479.896

Table S2 Central composite design based experimental designs (variables and responses) for enzymatic hydrolysis of Kans grass in terms of coded level of variables

23	20	4	55	4	40	151.26	155.62
24	30	6	55	6	80	407.16	410.89
25	20	6	55	4	80	432.94	438.18
26	25	5	45	5	60	265.33	260.99
27	25	5	50	5	60	461.44	479.896
28	30	6	45	6	40	202.62	206.37
29	25	4	50	5	60	360.90	359.18
30	30	4	45	4	40	255.27	258.12
31	25	5	50	4	60	455.56	453.24
32	20	6	45	4	40	264.48	269.75

Step (i)	Temperature (°C)	Pore diameter (nm)
0	-30	Estimating C ₀
1	-15	2.6
2	-13	3.04
3	-7	5.65
4	-6	4.84
5	-5.19	12.85
6	-2	19.8
7	-1.5	26.4
8	-1.3	30.4
9	-0.8	49.5
10	-0.2	198
		1

-0.1

11

 Table S3 The DSC-thermoporometry temperature program and the corresponding pore
 diameters.

Table S4 ANOVA analysis for regression coefficients and corresponding *F*- and *P*- values for
 enzymatic pretreatment

396

Source	DF ^a	Seq SS ^b	Adj SS ^b	Adj MS ^c	F	р	
Regression	20	894.844	894.844	44.742	10.04	< 0.001	
Linear	5	462.17	22.387	4.4774	1.00	0.459	
Square	5	146.30	146.30	29.261	6.56	< 0.005	
Interaction	10	286.36	286.36	28.636	6.42	0.002	
Residual error	11	49.038	49.038	4.4580			
Lack-of-fit	6	15.471	15.471	2.5785	0.38	0.862	
Pure error	5	33.567	33.567	6.7134			
Total	31	943.882					
$R^2 = 94.80$ %, I	$R^2(adj) =$	85.36 %					
a Degrees of Fr	a Degrees of Freedom						
b Sum of Squares.							
c Mean Squares	5.						

Source	DF ^a	Seq SS ^b	Adj SS ^b	Adj MS°	F	р	
Regression	20	476212	476212.6	23810.6	11.20	< 0.001	
Linear	5	50128	50104	10025.6	4.72	0.015	
Square	5	251949	241946	50389.7	23.71	< 0.001	
Interaction	10	174136	174139	17413.6	8.19	0.001	
Residual error	11	23378	23378.1	2125.3			
Lack-of-fit	6	13378	13378.1	3896.3		0.031	
Pure error	5						
Total	31	499590					
$R^2 = 95.32$ %, $R^2(adj) = 86.81$ %							
a Degrees of Freedom.							
b Sum of Squares.							
c Mean Squares.							

Table S5 ANOVA analysis for regression coefficients and corresponding *F*- and *P*- values for enzymatic hydrolysis

Fig. S3 (a) UV-spectra of pretreated liquid and standard at various concentrations (b) shows the standard Kraft lignin concentrations against absorbance 280 nm.

Fig. S4 Response surface plots for (a) solid loading and enzyme dose (b) incubation time and enzyme dose (c) solid loading and incubation time. % delignification represents amount of lignin degraded and horizontal axis represents different process variables.

Fig. S5 Response surface plots for (d) temperature and enzyme dose (e) solid loading and temperature (f) solid loading and enzyme dose. RS represents reducing sugar concentration and horizontal axis represents different process variables.

Fig. S6 SEM images for (a) raw substrate (b) pretreated substrate.

Fig. S6 (c) FT-IR spectra for raw and pretreated substrate.

Fig. S7 XRD for raw and pretreated substrate.