Electronic Supplementary Information

Potential anion sensing properties by a redox and substitution series of $[Ru(bpy)_{3-n}(Hdpa)_n]^{2+}$, n = 1-3; Hdpa = 2,2[']-Dipyridylamine: selective recognition and stoichiometric binding with cyanide and fluoride ions

Sagar K. Patil,^a Rajib Ghosh,^b Princy Kennedy,^a Shaikh M. Mobin^c and Dipanwita Das*^a

^aDepartment of Chemistry, Institute of Chemical Technology, Matunga, Mumbai 400019

(India)

Fax: (91)022-3361-1020

E-mail: dr.das@ictmumbai.edu.in

^bRadiation and Photochemistry Division, Bhabha Atomic Research Centre, Mumbai-400094,

India

^cDiscipline of Chemistry, School of Basic Sciences, Indian Institute of Technology Indore,

Indore 452017, India

Table S1 Crystallographic data for $[Ru(bpy)(Hdpa)_2](ClO_4)_2$ [2](ClO₄)₂ and

[Ru(bpy)₂(dpa)](BF₄) [1](BF₄)

	[2](ClO ₄) ₂	[1]BF ₄
Formula	$C_{30}H_{26}Cl_2N_8O_8Ru$	$C_{30}H_{24}BF_4N_7Ru$
Fw	798.56	670.44
T(K)	293(2) K	293 (2) K
Cryst. Syst.	Triclinic	Trigonal
Space group	<i>P</i> -1	P3221
a /Å	8.1459(5)	13.0588(3)
b /Å	10.9387(5)	13.0588(3)
c /Å	17.8507(9)	31.5888(11)
α (°)	88.824(4)	90
β (°)	88.463(4)	90
γ (°)	88.991(4)	120
$V/\text{\AA}^3$	1589.46(15)	4665.2(3)
$D_c (\mathrm{g \ cm}^{-3})$	1.669	1.432
Ζ	2	6
$\mu (\mathrm{mm}^{-1})$	0.727	0.559
F (000)	808	2028
θ range (deg)	2.976- 24.997	3.120-24.994
Data/restraints/params	5593/0/442	5487/482/433
GOF on F^2	1.166	1.108
$R_1^a [I > 2\sigma(I)], wR_2^b$ (all data)	0.0903, 0.2689	0.0982, 0.2582
Largest diff. peak/ hole/ e \AA^{-3}	2.761/ -1.985	1.676/ -1.035

Table S2 Selected bond distances (Å) and bond angles (°) for [Ru(bpy)(Hdpa)₂](ClO₄)₂,

[**2**](ClO)₄)₂

	[2](ClO ₄) ₂
$D_{11}(1) N(2)$	2.070(8)
Ku(1)-IN(2)	2.079(8)
Ru(1)-N(5)	2.085(8)
Ru(1)-N(3)	2.094(8)
Ru(1)-N(1)	2.095(8)
Ru(1)-N(8)	2.097(8)
Ru(1)-N(6)	2.100(8)
N(4)-H(4)	0.86
N(7)-H(7)	0.86
N(2)-Ru(1)-N(5)	95.9(3)
N(2)-Ru(1)-N(3)	85.8(3)
N(5)-Ru(1)-N(3)	87.9(3)
N(2)-Ru(1)-N(1)	79.2(3)
N(5)-Ru(1)-N(1)	173.8(3)
N(3)-Ru(1)-N(1)	88.0(3)
N(2)-Ru(1)-N(8)	92.6(3)
N(5)-Ru(1)-N(8)	94.2(3)
N(3)-Ru(1)-N(8)	177.5(3)
N(1)-Ru(1)-N(8)	89.8(3)
N(2)-Ru(1)-N(6)	175.7(3)
N(5)-Ru(1)-N(6)	88.2(3)
N(3)-Ru(1)-N(6)	93.1(3)
N(1)-Ru(1)-N(6)	96.6(3)
N(8)-Ru(1)-N(6)	88.3(3)

Table S3 Selected bond distances (Å	A) and bond angles (°) for	for $[Ru(bpy)_2(dpa)](BF_4)$,	[1](BF ₄)

	[1](BF ₄)
Ru(1)-N(2)	2.043(11)
Ru(1)-N(3)	2.054(12)
Ru(1)-N(4)	2.066(11)
Ru(1)-N(1)	2.070(11)
Ru(1)-N(6)	2.076(12)
Ru(1)-N(5)	2.113(13)
N(2)-Ru(1)-N(3)	87.6(5)
N(2)-Ru(1)-N(4)	95.0(5)
N(3)-Ru(1)-N(4)	78.2(5)
N(2)-Ru(1)-N(1)	79.2(5)
N(3)-Ru(1)-N(1)	96.5(5)
N(4)-Ru(1)-N(1)	172.3(5)
N(2)-Ru(1)-N(6)	93.3(4)
N(3)-Ru(1)-N(6)	173.8(5)
N(4)-Ru(1)-N(6)	95.6(5)
N(1)-Ru(1)-N(6)	89.8(5)
N(2)-Ru(1)-N(5)	175.5(6)
N(3)-Ru(1)-N(5)	91.8(6)
N(4)-Ru(1)-N(5)	89.3(5)
N(1)-Ru(1)-N(5)	96.5(6)
N(6)-Ru(1)-N(5)	87.8(6)

m/z

m/z

Fig. S1 ESI-MS (positive) for $[1](ClO_4)_2(a)$, $[2](ClO_4)_2(b)$ and $[3](ClO_4)_2(c)$.

m/z

Fig. S2 ¹H NMR of receptor $[1](ClO_4)_2$ in CD₃CN.

Fig. S3 ¹H NMR of receptor $[2](ClO_4)_2$ in CD₃CN.

Fig. S4 ¹H NMR of receptor $[3](ClO_4)_2$ in CD₃CN.

Fig. S5 Qualitative schematic energy diagram for $[Ru(bpy)_{3-n}(Hdpa)_n](ClO_4)_2$, where n = 0-3.

Fig. S6 Changes in absorption spectra of receptor 1^{2+} (a), 2^{2+} (b) and 3^{2+} (c) in CH₃CN upon addition of F⁻. The inset shows the changes of absorbance as a function of the equivalents of F⁻ added.

Fig. S7 Changes in absorption spectra of receptor 1^{2+} (a), 2^{2+} (b) and 3^{2+} (c) in CH₃CN in addition of different anions as their TBA–salts.

Fig. S8 Qualitative energy diagram for $[Ru(bpy)_{3-n}(Hdpa)_n](ClO_4)_2$, where n = 1-3, with corresponding deprotonated complexes.

Fig. S9 Job plots for the determination of the stoichiometry of 1^{2+} (a), 2^{2+} (b) and 3^{2+} (c) with CN^{-} ion.

Fig. S10 Job plots for the determination of the stoichiometry of 1^{2+} (a), 2^{2+} (b) and 3^{2+} (c) with F⁻ ion.

•

Fig. S11 Absorption spectra of (a) $\mathbf{1}^{2+}$ (b) $\mathbf{2}^{2+}$ and (c) $\mathbf{3}^{2+}$ as a function of pH in Britton-

Robinson aqueous universal buffer solution. Insets show the changes in absorbance

at (a) 398 nm for $\mathbf{1}^{2+}$, (b) 360 nm for $\mathbf{2}^{2+}$ (c) 368 nm for $\mathbf{3}^{2+}$ with the pH.

Fig. S12 Benesi-Hildebrand plots (a-f) of 1^{2+} , 2^{2+} and 3^{2+} with CN⁻ and F⁻.

Fig. S13 ¹H NMR spectra of $\mathbf{1}^{2+}$ in absence and presence of one equivalent of F^- in CD₃CN.

Fig. S14 ¹H NMR titration of 2^{2+} in CD₃CN with the TBA salt of CN⁻ ion (0–2 equivalents).

Fig. S15 ¹H NMR titration of 3^{2+} in CD₃CN with the TBA salt of CN⁻ ion (0–3 equivalents).

Fig. S16 Cyclic voltammograms of 1^{2+} (black), 2^{2+} (red) and 3^{2+} (blue) in CH₃CN.

Fig. S17 Changes in emission intensity of receptor **1**²⁺ upon addition of TBA–salts of different anions.

Fig. S18 Stern-Volmer plots of $[1](ClO_4)_2$ with $F^-(a)$ and $AcO^-(b)$.

Fig. S19 Emission kinetics (normalized at maxima) of complex $[1](ClO_4)_2$ in presence of F⁻ (a) and AcO⁻ (b) ion. (c) Plot of τ_0/τ versus concentration of anions (F⁻ and AcO⁻).

Fig. S20 Emission spectra of receptor 2²⁺ in CH₃CN solution in the presence and absence of CN⁻(a), F⁻(b) and AcO⁻(c) anions. (d) Relative emission intensity of receptor 2²⁺ upon addition of F⁻, CN⁻, AcO⁻, NO₃⁻, Cl⁻, Br⁻, HSO₄⁻, ClO₄⁻ and PF₆⁻ ions in CH₃CN solution.

Fig. S21 Changes in emission spectra of receptor 2^{2+} upon addition of different anions of TBA–salts.