Nanoforest of hierarchical core/shell CuO@NiCo2O4nanowire heterostructure

arrays on nickel foam for high-performance supercapacitors

Chun Wu, Junjie Cai, Ying Zhu, Kaili Zhang*

Department of Mechanical and Biomedical Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Hong Kong

* Corresponding authors, E-mail address: kaizhang@cityu.edu.hk

Figure S1 SEM images of (a) nickel foam supported CuO nanowires, (b-d) CuO@NiCo₂O₄ electrode materials under different reaction time, 1h, 2h and 3h.

Figure S2 SEM images of CuO@NiCo₂O₄ electrode materials prepared from different salts with the same ratios between Co and Ni at 130 °C for 5 h: (a) sulfates, (b) nitrates, (c) chlorates and (d) acetates.

Figure S3 SEM images of nickel foam supported NiCo2O4 electrode material

Figure S4 N_2 absorption/desorption isotherm of the hierarchical mesoporous NiCo₂O₄ nanosheet branches, the inset is the pore distribution

Figure S5 (a) CV and (b) charge/discharge curves of the $NiCo_2O_4$ electrode

Figure S6 SEM images of CuO@NiCo₂O₄-1 electrode material

Figure S7 (a) and (c) CV and charge/discharge curves of the CuO@NiCo₂O₄-1 electrode, (b) and

(d) Comparisons of CV and charge/discharge curves between $CuO@NiCo_2O_4$ and

CuO@NiCo2O4-1 electrode

Electrode Materials	Specific Capacitance	Ref.
Flower-shaped NiCo2O4 microsphere	1006 F g ⁻¹ at 1 A g ⁻¹	1
Porous spinel NiCo2O4	726.8 F g ⁻¹ at 1 A g ⁻¹	2
Porous NiCo2O4 heterostructure arrays	891 F g ⁻¹ at 1 A g ⁻¹	3
Porous NiCo2O4 nanowires	743 F g ⁻¹ at 1 A g ⁻¹	4
Porous NiCo2O4 flowerlike nanostructure	658 F g ⁻¹ at 1 A g ⁻¹	5
Urchin-like NiCo2O4	636 F g ⁻¹ at 0.5 A g ⁻¹	6
Core/shell CuO@NiCo ₂ O ₄	1129.8 F g ⁻¹ at 1 A g ⁻¹	This work
heterostructure arrays		

Table S1 Specific capacitance of different $NiCo_2O_4$ electrode and nickel foam supported core/shell CuO@NiCo_2O_4 nanowire heterostructure arrays

References

- 1 Y. Lei, J. Li, Y. Y. Wang, L. Gu, Y. F. Chang, H. Y. Yuan, and D. Xiao, ACS Appl. Mater. Interfaces, 2014, 6, 1773-1780.
- 2 Z. B. Wu, X. L. Pu, Y. R. Zhu, M. J. Jing, Q. Y. Chen, X. N. Jia, and X. B. Ji, J. Alloys Compd., 2015, 632, 208-217.
- 3 X. Y. Liu, Y. Q. Zhang, X. H. Xia, S. J. Shi, Y. Lu, X. L. Wang, C. D. Gu, and J. P. Tu, J. Power Sources, 2013, 239, 157-163.
- 4 H. Jiang, J. Ma, and C. Z. Li, Chem. Commun., 2012, 48, 4465-4467.
- 5 H. C. Chen, J. J. Jiang, L. Zhang, T. Qi, D. D. Xia and H. Z. Wan, J. Power Sources, 2014, 248, 28-36.
- 6 E. Umeshbabu, G. Rajeshkhanna, G. R. Rao, Int. J. Hydrogen Energy, 2014, 39, 15627-15638.