Supporting Information

Cu-Al mixed oxides catalysts for the azide-alkyne 1,3-cycloaddition in ethanol-water

R. González-Olvera,^a C. I. Urquiza-Castro,^b G. E. Negrón-Silva,^{a*} D. Angeles-Beltrán,^a L. Lomas-Romero,^{b*} A. Gutiérrez-Carrillo,^b V. H. Lara,^b Rosa Santillan,^c J. A. Morales-Serna.^b

^aDepartamento de Ciencias Básicas, Universidad Autónoma Metropolitana Azcapotzalco, Av. San Pablo No. 180, Ciudad de México, C.P. 02200, México. Fax: +52 55 53189000 (ext. 2169); Tel: +52 55 5318 9593; E-mail: gns@correo.azc.uam.mx (GENS)

^bDepartamento de Química, Universidad Autónoma Metropolitana Iztapalapa, Av. San Rafael Atlixco No.186, Ciudad de México, C.P. 09340, México. Fax: +52 55 58044666; Tel: +52 55 58044913; E-mail: Ilr@xanum.uam.mx (LLR)

^cDepartamento de Química, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Apartado Postal Apartado Postal 14-740, Ciudad de México 07000, México.

Table of Contents

1. General methods	S1
2. Experimental procedures	S1
3. Characterization data	S7
4. ¹ H and ¹³ C NMR spectra for 1,2,3-triazoles	S17
5. References	S29

1. General methods

Commercially available reagents and solvents were used as received. Column chromatography was performed on Kiesel gel silica gel 60 (230-400 mesh). Melting points were determined using a Fisher-Johns apparatus and are uncorrected. The NMR spectra were obtained using Bruker Ascend-400 (400 MHz) and Bruker Avance DMX-500 (500 MHz) spectrometers. Chemical shifts (δ) are given in ppm and coupling constants J are given in hertz (Hz). Mass spectra (MS) were recorded on a GC-MS, Agilent Technologies 6890N, Detector 5973, column HP5-MS 30m x $0.25 \text{ mm x} 0.25 \mu\text{m}$, in the chemical ionization mode using methane UAP grade as ionization gas. High-resolution mass spectra (HRMS) were recorded on a JEOL JMS-SX 102a and Agilent-MSD-TOF-1069A spectrometers. Microwave irradiation experiments were performed on a Discover System (CEM Corporation) single-mode microwave using standard sealed microwave glass vials. Simultaneous air jet cooling (3-4 bar) during microwave irradiation was performed by using a compressor. The nitrogen adsorption-desorption isotherm of HDL was obtained at -196 °C on Micromeritics ASAP 2020 equipment. Powder X-ray diffraction (XRD) was performed using a Philips X'Pert Instrument with Cu-Ka radiation (45kV, 40 mA). SEM-EDS images and emission spectra were obtained using a Zeiss SUPRA 55 VP microscope with secondary electron and Oxford detector.

2. Experimental procedures

Synthesis of Cu-Al layered double hydroxide (LDH)

LDHs were prepared by dissolving 11.6 g of $Cu(NO_3)_2 \cdot 2.5H_2O$ and 9.37 g of $Al(NO_3)_2 \cdot 9H_2O$ in 90 mL of deionized H_2O at room temperature. Then, 100 mL of 0.5M Na_2CO_3 was added at room temperature. The green gel formed, was heated to 40 ° C in a microwave (90W, 250 psi) for 5 minutes. The obtained gel was washed five times with deionized H_2O to pH 7. The material was dried at 120° C for 18 hours.

Preparation of Cu(AI)O mixed oxides

The calcined material was obtained by heating of as-synthesized LDH at 540° C in a tubular furnace under N₂ flow for 6 hours. 7 g of a black solid is stable in air, which was characterized by XRD, IR, nitrogen physisorption and scanning electron microscopy was obtained.

Characterization of Cu-Al layered double hydroxide (LDH) and Cu(Al)O mixed oxides

The as-synthesized LDH exhibited Cu-Al reflections associated with the layered double hydroxide crystal structure. The maxima correspond to typical diffraction by planes (1 1 0), (0 0 2), (1 1 1), (1 1 2), (0 2 0), (1 0 1) and (1 1 3) (Figure S1). These planes are similar to those shown by malachite [Cu₂CO₃(OH)₂] because of the presence of Cu in the material. Calcining the material yields a Cu(AI)O mixed oxide with a periclase-like structure with (110), (111), (202), (022), (113), (311) and (220) plane reflections, which are typical of CuO (Figure S2). The nitrogen adsorptiondesorption isotherm of as-synthesized LDH (Figure S3) and the Cu(AI)O mixed oxide (Figure S4) showed a profile corresponding to type II of the IUPAC classification, typical for mesoporous materials. The as-synthesized LDH and the Cu(AI)O mixed oxide surface area, pore volume, and pore size are shown in the Table S1. SEM-EDS analysis revealed the presence of Cu in the as-synthesized LDH and the mixed oxide structure, as shown in the emission spectra of Figure S5 and elemental composition (Table S2). The thermal decomposition behaviour of the assynthesized and calcinated hydrotalcite was observed by TGA analysis in nitrogen atmosphere Figure S6.

Figure S6

Supporting Information

Figure S5. Quantification of Cu⁺² by UV in the mixture EtOH-H₂O

General procedure for the synthesis of 1,2,3-triazoles 3a-3g

A mixture of catalyst (10 mg) and EtOH-H₂O (2 mL, 3:1 v/v) was placed in a microwave tube having a magnetic stirrer. Subsequently, alkyne 1a-1e (1 mmol), benzyl halide **2a-2e** (1.2 mmol), NaN₃ (1.2 mmol), and sodium ascorbate (10 mg), were added to the mixture, which was heated under microwave irradiation (30 W, 80 °C) during 10 minutes. Then, the material was removed by centrifugation and washed with CH₂Cl₂ (5x5mL). The combined organic extracts were evaporated, aivina the corresponding 1,2,3-triazole, which was purified by column chromatography (CH₂Cl₂ or hexanes-EtOAc 1:1) and/or recrystallization (CH₂Cl₂hexanes, 1:2).

General procedure for the synthesis of alkynes 1b-1e

Alkynes **1b-1c** were synthesized according to our previously reported method.¹ Alkynes **1d-1e** were synthesized according to our previously reported method.²

General procedure for the synthesis of steroidal mesylate derivatives

Mesylates 4a, 4c, 4e and 4g were synthesized by literature procedures.³

General procedure for the synthesis of steroidal azide derivative-s

Azides 4b, 4d, 4f and 4h were synthesized by literature procedures.⁴

General procedure for the synthesis of 1,2,3-triazoles 5a-5f from steroidal azide

A mixture of catalyst (10 mg) and EtOH-H₂O (2 mL, 3:1 v/v) was placed in a microwave tube having a magnetic stirrer. Subsequently, alkyne **1d-1e** (1 mmol), steroidal azide derivatives **4b**, **4d**, **4f** or **4h** (1.2 mmol), and sodium ascorbate (10 mg), were added to the mixture, which was heated under microwave irradiation (30 W, 80 °C) during 10 minutes. Then, the material was removed by centrifugation and washed with CH_2Cl_2 (5x5mL). The combined organic extracts were evaporated, giving the corresponding 1,2,3-triazole, which was purified by column chromatography (CH₂Cl₂ or hexanes-EtOAc 1:1) and recrystallization (CH₂Cl₂-hexanes, 1:2).

General procedure for the synthesis of 1,2,3-triazoles 5a-5f from mesylate derivatives

A mixture of catalyst (10 mg) and EtOH-H₂O (2 mL,3:1) was placed in a microwave tube having a magnetic stirrer. Subsequently, alkyne **1d-1e** (1 mmol), mesilate derivatives **4a**, **4c**, **4e** or **4g** (1.2 mmol), NaN₃ (1.2 mmol), and sodium ascorbate (10 mg), were added to the mixture, which was heated under microwave irradiation (30 W, 80 °C) during 10 minutes. Then, the material was removed by centrifugation and washed with CH_2CI_2 (5x5mL). The combined organic extracts were evaporated, giving the corresponding 1,2,3-triazole, which was purified by column chromatography (CH_2CI_2 or hexanes-EtOAc 1:1) and recrystallization (CH_2CI_2 -hexanes, 1:2).

General procedure to screen the recyclability

A mixture of catalyst (10 mg) and EtOH-H₂O (2 mL, 3:1 v/v) was placed in a microwave tube having a magnetic stirrer. Subsequently, alkyne **1a** (1 mmol), benzyl halide **2a** (1.2 mmol), NaN₃ (1.2 mmol), and sodium ascorbate (10 mg), were added to the mixture, which was heated under microwave irradiation (30 W, 80 °C) during 10 minutes. Then, the material was removed by centrifugation and washed with

 CH_2CI_2 (5x5mL). The combined organic extracts were evaporated, giving the corresponding 1,2,3-triazole, which was purified by column chromatography (CH_2CI_2 or hexanes-EtOAc 1:1) and/or recrystallization (CH_2CI_2 -hexanes, 1:2).

3. Characterization data

1-Benzyl-4-phenyl-1*H*-1,2,3-triazole (3a).

White solid, yield 98%, mp = 129-131 °C [Lit.⁵ mp = 127-130 °C].

FT-IR/ATR v_{max} cm⁻¹: 3108, 3081, 1686, 1482, 1403. NMR ¹H (CDCl₃, 500 MHz): δ = 5.56 (s, 2H, NCH₂), 7.28-7.32 (m, 3H, ArH), 7.35-7.41 (m, 5H, ArH), 7.65 (s, 1H, ArH, triazole), 7.77-7.80 (m, 2H, ArH). NMR ¹³C (CDCl₃, 125.7 MHz): δ = 54.2 (NCH₂), 119.5 (ArCH, triazole), 125.7 (2xArCH), 128.1 (2xArCH), 128.2 (ArCH), 128.78 (ArCH), 128.8 (2xArCH), 129.1 (2xArCH), 130.6 (C_{ipso}), 134.7 (C_{ipso}), 148.2 (C_{ipso}, triazole). EM (CI) for C₁₅H₁₃N₃ *m*/*z*: 236 [M+1]⁺, 264 [M+29]⁺, 276 [M+41]⁺, 91 (PhCH₂).

1-(4-Fluorobenzyl)-4-phenyl-1*H*-1,2,3-triazole (3b).

White solid, yield 90%, mp = 132-134 °C [Lit.⁵ mp = 128-130 °C].

FT-IR/ATR v_{max} cm⁻¹: 3119, 3083, 1601, 1480, 1350. NMR ¹H (CDCl₃, 500 MHz): δ = 5.55 (s, 2H, NCH₂), 7.06-7.11 (m, 2H, ArH), 7.30-7.36 (m, 3H, ArH), 7.40-7.44 (m, 2H, ArH), 7.68 (s, 1H, ArH, triazole), 7.80-7.83 (m, 2H, ArH). NMR ¹³C (CDCl₃, 125.7 MHz): δ = 53.5 (NCH₂), 116.1 (d, *J* = 22.6 Hz, 2xArCH), 119.4 (ArCH, triazole), 125.7 (2xArCH), 128.2 (ArCH), 128.8 (2xArCH), 129.9 (d, *J* = 8.8 Hz, 2xArCH), 130.4

(C_{ipso}), 130.6 (d, J = 3.8 Hz, C_{ipso}), 148.3 (C_{ipso} , triazole), 162.9 (d, J = 247.6 Hz, F- C_{ipso}).

1-(4-Chlorobenzyl)-4-phenyl-1*H*-1,2,3-triazole (3c).

White solid, yield 95%, mp = 140-142 °C [Lit.⁵ mp = 142-145 °C].

FT-IR/ATR v_{max} cm⁻¹: 3108, 3082, 3065, 1595, 1578, 1481, 1411. NMR ¹H (CDCl₃, 500 MHz): δ = 5.52 (s, 2H, NCH₂), 7.21-7.24 (m, 2H, ArH), 7.29-7.36 (m, 3H, ArH), 7.37-7.41 (m, 2H, ArH), 7.66 (s, 1H, ArH, triazole), 7.77-7.80 (m, 2H, ArH). NMR ¹³C (CDCl₃, 125.7 MHz): δ = 53.5 (NCH₂), 119.5 (ArCH, triazol), 125.7 (2xArCH), 128.3 (ArCH), 128.8 (2xArCH), 129.35 (2xArCH), 129.36 (2xArCH), 130.4 (C_{ipso}), 133.2 (C_{ipso}), 134.8 (C_{ipso}), 148.4 (C_{ipso}, triazole). EM (CI) for C₁₅H₁₂Cl₁N₃ *m/z*: 270 [M+1]⁺, 298 [M+29]⁺, 312 [M+41]⁺, 125 (CI-PhCH₂).

1-(4-Bromobenzyl)-4-phenyl-1*H*-1,2,3-triazole (3d).

White solid, yield 85%, mp = 138-140 °C [Lit.⁶ mp = 151-152 °C].

FT-IR/ATR v_{max} cm⁻¹: 3106, 3082, 3055, 1686, 1577, 1481, 1407. NMR ¹H (CDCl₃, 500 MHz): δ = 5.54 (s, 2H, NCH₂), 7.19 (d, *J* = 8.7 Hz, 2H, ArH), 7.32-7.36 (m, 1H, ArH), 7.40-7.44 (m, 2H, ArH), 7.53 (d, *J* = 8.7 Hz, 2H, ArH), 7.69 (s, 1H, ArH, triazole), 7.80-7.83 (m, 2H, ArH). NMR ¹³C (CDCl₃, 125.7 MHz): δ = 53.5 (NCH₂), 119.5 (ArCH, triazole), 122.9 (Br-C_{ipso}), 125.7 (2xArCH), 128.3 (ArCH), 128.8

(2xArCH), 129.6 (2xArCH), 130.4 (C_{ipso}), 132.3 (2xArCH), 133.7 (C_{ipso}), 148.4 (C_{ipso} , triazole). EM (CI) for $C_{15}H_{12}Br_1N_3 m/z$: 314 [M+1]⁺, 342 [M+29]⁺, 356 [M+41]⁺, 91 (PhCH₂), 171 (Br-PhCH₂), 236 ($C_{15}H_{13}N_3$).

1-(4-lodobenzyl)-4-phenyl-1*H*-1,2,3-triazole (3e).

White solid, yield 90%, mp = 167-169 °C. [Lit.⁶ mp = 154-156 °C].

FT-IR/ATR v_{max} cm⁻¹: 3108, 3081, 1686, 1581, 1482, 1403. NMR ¹H (CDCl₃, 500 MHz): δ = 5.49 (s, 2H, NCH₂), 7.03 (d, *J* = 8.1 Hz, 2H, ArH), 7.25-7.33 (m, 1H, ArH), 7.37-7.41 (m, 2H, ArH), 7.66 (s, 1H, ArH, triazol), 7.70 (d, *J* = 8.3 Hz, 2H, ArH), 7.77-7.80 (m, 2H, ArH). NMR ¹³C (CDCl₃, 125.7 MHz): δ = 53.7 (NCH₂), 94.7 (I-C_{ipso}), 119.6 (ArCH, triazole), 125.8 (2xARCH), 128.4 (ArCH), 128.9 (2xArCH), 129.9 (2xArCH), 130.4 (C_{ipso}), 134.4 (C_{ipso}), 138.4 (2xArCH), 148.5 (C_{ipso}, triazole). EM (CI) para C₁₅H₁₂I₁N₃ *m/z*: 362 [M+1]⁺, 390 [M+29]⁺, 402 [M+41]⁺, 217 (I-PhCH₂), 236 (C₁₅H₁₃N₃), 91 (PhCH₂).

1,3-Bis((1-benzyl-1*H*-1,2,3-triazol-4-yl)methyl)pyrimidine-2,4-(1*H*,3*H*)-dione (3f).

White solid, yield 90%, mp =175–176 °C [Lit.¹ mp = 171-172 °C].

FT-IR/ATR v_{max} cm⁻¹: 3133, 3067, 3012, 2954, 1700, 1650, 1555, 1496, 1452, 1434. NMR ¹H (CDCl₃, 500 MHz): δ = 4.93 (s, 2H, CH₂NC=O), 5.15 (s, 2H, CH₂NC=O), 5.43 (s, 2H, NCH₂Ph), 5.47 (s, 2H, NCH₂Ph), 5.69 (d, *J* = 7.9 Hz, 1H, CH), 7.20–7.28 (m,4H, ArH), 7.32–7.42 (m, 6H, ArH), 7.44 (d, *J* = 8.0 Hz, 1H, NCH), 7.49 (s, 1H, ArH, triazole), 7.62 (s,1H, ArH, triazol). NMR ¹³C (CDCl₃, 125.7 MHz): δ = 36.2 (CH₂NC=O), 44.2 (CH₂NC=O), 54.2 (NCH₂Ph), 54.4(NCH₂Ph), 102.0 (CH), 123.4 (ArCH, triazole), 123.7 (ArCH, triazole), 128.2 (2×ArCH), 128.4(2×ArCH), 128.8 (ArCH), 129.0 (ArCH), 129.1 (2×ArCH), 129.3 (2×ArCH), 134.2 (C_{ipso}), 134.6 (C_{ipso}), 142.3 (C_{ipso}, triazole), 142.6 (NCH), 143.4 (C_{ipso}, triazole), 151.2 (N₂C=O), 162.6 (NC=O).

1,3-bis((1-benzyl-1*H*-1,2,3-triazol-4-yl)methyl)-5-methylpyrimidine-2,4(1*H*,3*H*)dione (3g).

White solid, yield 90%, mp =187–189 °C [Lit.¹ mp = 187-189 °C].

FT-IR/ATR v_{max} cm⁻¹: 3133, 3115, 3068, 2956, 1697, 1672, 1646, 1550, 1496, 1453, 1432. NMR ¹H (CDCl₃, 500 MHz): δ = 1.86 (d, *J* = 1.0 Hz, 3H, CH₃), 4.91 (s, 2H, CH₂NC=O), 5.16(s, 2H, CH₂NC=O), 5.43 (s, 2H, NCH₂Ph), 5.46 (s, 2H, NCH₂Ph), 7.21–7.28 (m, 4H, ArH), 7.29 (d, *J* = 1.1 Hz, 1H, NCH), 7.30–7.37 (m, 6H, ArH), 7.49 (s, 1H, ArH, triazole), 7.62 (s, 1H, ArH,triazole). NMR ¹³C (CDCl3, 125.7 MHz): δ = 13.0 (CH3), 36.4 (CH₂NC=O), 43.9 (CH₂NC=O), 54.2 (NCH₂Ph),54.4 (NCH₂Ph), 110.3 (CCH₃), 123.5 (ArCH, triazole), 123.7 (ArCH, triazole), 128.2 (2×ArCH), 128.4 (2×ArCH), 128.8 (ArCH), 129.0 (ArCH), 129.1 (2×ArCH), 129.3 (2×ArCH), 134.3 (C_{ipso}), 134.7 (C_{ipso}), 138.7 (NCH), 142.6 (C_{ipso}, triazole), 143.5 (C_{ipso}, triazole), 151.2 (N₂C=O), 163.5 (NC=O).

(4R)-methyl 4-((3*S*,5*R*,10*S*,13*R*,17*R*)-3-(4-((2,4-dioxo-3,4-dihydropyrimidin-1(2*H*)-yl)methyl)-1*H*-1,2,3-triazol-1-yl)-10,13-dimethylhexadecahydro-1*H*-cyclopenta[*a*]phenanthren-17-yl)pentanoate (5a).

White solid, yield 90%, mp = 105-107°C, $[\alpha]^{25}_{D}$ = +23.75 (*c* 0.1, CHCl₃).

NMR ¹H (500 MHz, CDCl₃): δ = 0.65 (s, 3H, CH₃), 0.91 (s, 3H, CH₃), 0.92 (d, 3H, *J* = 6.5 Hz, CH₃), 1.05-1.20 (m, 6H, CH₂, CH), 1.24-1.48 (m, 9H, CH₂, CH), 1.57-1.64 (m, 3H, CH₂, CH), 1.76-1.92 (m, 3H, CH₂), 1.96-2.04 (m, 3H, CH₂), 2.14-2.18 (m, 1H, CH₂), 2.19-2.26 (m, 1H, CH₂), 2.35 (m, 2H, CH₂), 3.66 (s, 3H, OCH₃), 4.67 (m, 1H, CH), 5.01 (d, *J* = 15.0 Hz, 1H, CH), 5.02 (d, *J* = 15.0 Hz, 1H, CH), 5.72 (d, *J* = 7.0 Hz, 1H, CH), 7.58 (d, 1H, *J* = 7.0 Hz, CH), 7.76 (s, 1H, ArH, triazole) , 9.25 (brs, 1H, NH). NMR ¹³C (125.7 MHz, CDCl₃): δ = 12.0 (CH₃), 18.3 (CH₃), 21.0 (CH₂), 23.8 (CH₃), 24.2 (CH₂), 24.9 (CH₂), 26.1 (CH₂), 26.4 (CH₂), 28.2 (CH₂), 29.8 (CH₂), 30.7 (CH₂), 31.0 (CH₂), 31.1 (CH₂), 51.5 (OCH₃), 56.0 (CH), 37.3 (CH), 40.1 (CH₂), 40.5 (CH), 42.8 (C), 43.0 (CH₂), 51.5 (OCH₃), 56.0 (CH), 56.6 (CH), 57.1 (CH), 102.6 (=CH), 122.8 (ArCH, triazole), 141.2 (C_{ipso}, triazole), 144.4 (=CH), 150.9 (NC=ON), 163.6 (NC=O), 174.8 (OC=O). FT-IR/ATR v_{max} cm⁻¹: 3487, 2934, 2862, 1732, 1712,

1675, 1462, 1436, 1241, 1208. HRMS (ESI-TOF) calculated for $C_{32}H_{47}N_5O_4 + H^+$: 566.3701; Found: 566.3702.

(4*R*)-methyl 4-((3*S*,5*R*,10*S*,13*R*,17*R*)-10,13-dimethyl-3-(4-((5-methyl-2,4-dioxo-3,4-dihydropyrimidin-1(2*H*)-yl)methyl)-1*H*-1,2,3-triazol-1-yl)hexadecahydro-1*H*cyclopenta[*a*]phenanthren-17-yl)pentanoate (5b).

White solid, yield 98%, mp = 163-165°C, $[\alpha]^{25}_{D}$ = +21.52 (*c* 0.1, CHCl₃).

NMR ¹H (500 MHz, CDCl₃): δ = 0.64 (s, 3H, CH₃), 0.90 (s, 3H, CH₃), 0.91 (d, 3H, *J* = 6.4 Hz, CH₃), 1.04-1.20 (m, 6H, CH₂, CH), 1.24-1.37 (m, 4H, CH₂), 1.38-1.48 (m, 5H, CH₂, CH), 1.57-1.64 (m, 3H, CH₂, CH), 1.76-1.89 (m, 3H, CH₂), 1.90 (d, *J* = 1.1 Hz, 3H, CH₃), 1.92-2.04 (m, 3H, CH₂), 2.14-2.18 (m, 1H, CH₂), 2.19-2.25 (m, 1H, CH₂), 2.35 (m, 2H, CH₂), 3.66 (s, 3H, OCH₃), 4.66 (m, 1H, CH), 4.94 (d, *J* = 15.0 Hz, 1H, CH), 4.98 (d, *J* = 15.0 Hz, 1H, CH), 7.37 (q, *J* = 1.2 Hz, 1H, CH), 7.73 (s, 1H, ArH, triazole), 9.04 (s, 1H, NH). NMR ¹³C (125.7 MHz, CDCl₃): δ = 12.1 (CH₃), 12.3 (CH₃, thymine), 18.3 (CH₃), 21.0 (CH₂), 23.8 (CH₃), 24.2 (CH₂), 24.9 (CH₂), 26.1 (CH₂), 26.4 (CH₂), 28.2 (CH₂), 29.8 (CH₂), 30.7 (C), 31.0 (CH₂), 31.1 (CH₂), 34.8 (C), 35.4 (CH), 35.6 (CH), 37.3 (CH), 40.2 (CH₂), 40.5 (CH), 42.76 (C), 42.8 (CH₂), 51.5 (OCH₃), 56.0 (CH), 56.6 (CH), 57.1 (CH), 111.2 (=C), 122.7 (ArCH, triazole), 140.3 (=CH), 141.5 (C_{ipso}, triazole), 150.9 (NC=ON), 164.1(NC=O), 174.7 (OC=O). FT-

IR/ATR v_{max} cm⁻¹: 2925, 2860, 1733, 1674, 1655, 1450, 1434, 1215, 1101, 1048, 777. HRMS (ESI-TOF) calculated for $C_{33}H_{49}N_5O_4 + H^+$: 580.3857; Found: 580.3860.

(4*R*)-methyl4-((5*R*,10*S*,12*S*,13*R*,17*R*)-3-(4-((2,4-dioxo-3,4-dihydropyrimidin-1(2H)-yl)methyl)-1H-1,2,3-triazol-1-yl)-12-hydroxy-10,13-

dimethylhexadecahydro-1H-cyclopenta[a]phenanthren-17-yl)pentanoate (5c).

White solid, yield 65%, mp = 99-101°C, $[\alpha]^{25}_{D}$ = +42.80 (*c* 0.1, CHCl₃).

NMR ¹H (500 MHz, CDCl₃): δ = 0.68 (s, 3H, CH₃), 0.89 (s, 3H, CH₃), 0.96 (d, 3H, *J* = 6.5 Hz, CH₃), 1.05-1.20 (m, 5H, CH₂, CH), 1.24-1.48 (m, 9H, CH₂, CH), 1.57-1.64 (m, 3H, CH₂, CH), 1.76-1.92 (m, 3H, CH₂), 1.96-2.04 (m, 2H, CH₂), 2.14-2.18 (m, 1H, CH₂), 2.19-2.26 (m, 1H, CH₂), 2.35 (m, 2H, CH₂), 3.65 (s, 3H, OCH₃), 4.00 (dd, *J* = 3.8, 3.8 Hz, 1H, CH), 4.64 (m, 1H, CH), 4.96 (d, *J* = 15.1 Hz, 1H, CH), 5.0 (d, *J* = 15.1 Hz, 1H, CH), 5.69 (d, *J* = 7.9 Hz, 1H, CH), 7.55 (d, 1H, *J* = 7.9 Hz, CH), 7.74 (s, 1H, ArH, triazole), 9.47 (brs, 1H, NH). NMR ¹³C (125.7 MHz, CDCl₃): δ = 12.8 (CH₃), 17.4 (CH₃), 23.6 (CH₂), 23.7 (CH₃), 24.9 (CH₂), 25.9 (CH₂), 26.4 (CH₂), 27.5 (CH₂), 28.8 (CH₂), 29.8 (CH₂) 30.6 (CH₂), 31.0 (CH₂), 31.1 (CH₂), 33.7 (CH), 34.4 (C), 35.1 (CH), 35.9 (CH), 37.3 (CH), 43.0 (CH₂), 46.6 (C), 47.5 (C), 48.4 (CH₂), 51.6 (OCH₃), 57.2 (CH), 151.1 (NC=ON), 163.8 (NC=O), 174.7 (OC=O). IR/ATR v_{max} cm⁻¹:

4828, 3071, 2931, 1678, 1448, 1376,1348,1243,1093. HRMS (ESI-TOF) calculated for $C_{32}H_{47}N_5O_5 + H^+$: 582.3650; Found: 582.3653.

(4*R*)-methyl4-((5*R*,10*S*,12*S*,13*R*,17*R*)-12-hydroxy-10,13-dimethyl-3-(4-((5-methyl-2,4-dioxo-3,4-dihydropyrimidin-1(2H)-yl)methyl)-1H-1,2,3-triazol-1yl)hexadecahydro-1H-cyclopenta[a]phenanthren-17-yl)pentanoate (5d).

White solid, yield 70%, mp = 106-108°C [α]²⁵_D = +46.97 (*c* 0.1, CHCl₃).

NMR ¹H (500 MHz, CDCl₃): $\delta = 0.67$ (s, 3H, CH₃), 0.68 (s, 3H, CH₃), 0.89 (d, 3H, *J* = 6.4 Hz, CH₃), 1.04-1.20 (m, 5H, CH₂, CH), 1.24-1.37 (m, 4H, CH₂), 1.38-1.48 (m, 5H, CH₂, CH), 1.57-1.64 (m, 3H, CH₂, CH), 1.76-1.89 (m, 3H, CH₂), 1.90 (d, *J* = 1.1 Hz, 3H, CH₃), 1.92-2.04 (m, 2H, CH₂), 2.14-2.18 (m, 1H, CH₂), 2.19-2.25 (m, 1H, CH₂), 2.35 (m, 2H, CH₂), 3.66 (s, 3H, OCH₃), 4.01 (dd, *J* = 2.6, 2.6 Hz, 1H, CH), 4.64 (m, 1H, CH), 4.96 (d, *J* = 14.8 Hz, 1H, CH), 4.97 (d, *J* = 14.8 Hz, 1H, CH), 7.73 (s, 1H, ArH, triazole), 8.89 (s, 1H, NH). NMR ¹³C (125.7 MHz, CDCl₃): $\delta = 12.2$ (CH₃), 12.7 (CH₃, thymine), 17.3 (CH₃), 23.5 (CH₃), 23.5 (CH₂), 30.8 (CH₂), 31.0 (CH₂), 33.6 (CH), 35.0 (C), 35.7 (CH), 35.8 (CH), 37.2 (CH), 42.7 (CH₂), 46.6 (C), 47.4 (CH), 48.3 (CH), 150.7 (C_{ipso}, triazole), 164.0 (NC=ON), 174.6 (NC=O), 174.6 (OC=O). IR /ATR v_{max} cm⁻¹: 4828, 3071, 2931, 1678, 1448,

1376,1348,1243,1093. HRMS (ESI-TOF) calculated for $C_{33}H_{49}N_5O_5$ + H⁺ : 596.3767; Found: 596.3760.

(4R)-methyl 4-((3S,5S,7R,10S,13R,17R)-7-acetoxy-10,13-dimethyl-3-(4-((5-methyl-2,4-dioxo-3,4-dihydropyrimidin-1(2H)-yl)methyl)-1H-1,2,3-triazol-1-yl)hexadecahydro-1H-cyclopenta[a]phenanthren-17-yl)pentanoate (5e).

White solid, yield 95%, mp = 99-102°C, $[\alpha]^{25}_{D}$ = +25.29(*c* 0.1, CHCl₃).

NMR ¹H (500 MHz, CDCl₃): δ = 0.66 (s, 3H, CH₃), 0.92 (s, 3H, CH₃), 0.93 (d, J = 6.6 Hz, 3H, CH₃), 1.05-1.52 (m, 11H, CH₂, CH), 1.58-1.70 (m, 4H, CH₂, CH), 1.76-1.88 (m, 3H, CH₂, CH), 1.90 (d, J = 0.8 Hz, 3H, CH₃, thymine), 1.95-2.03 (m, 3H, CH₂), 2.06 (s, 3H, CH₃, acetyl), 2.08-2.26 (m, 2H, CH₂), 2.34 (ddd, J = 14.0, 10.0, 5.0 Hz, 1H, CH₂), 2.61 (td, J = 14.0, 4.7, Hz, 1H, CH₂), 3.66 (s, 3H, OCH₃), 4.75 (m, 1H, CH), 4.91 (ddd, J = 14.0, 8.5, 3.0 Hz, 1H, CH) 4.93 (d, J = 15.1 Hz, 1H, CH), 4.96 (d, J = 15.1 Hz, 1H, CH), 7.35 (g, J = 0.8 Hz, 1H, =CH), 7.72 (s, 1H, ArH, triazole), 8.77 (brs, 1H, NH). NMR ¹³C (CDCl₃, 125.7 MHz): δ = 11.7 (CH₃), 12.3 (CH₃, thymine), 18.3 (CH₃), 20.8 (CH₂), 21.5 (CH₃, acetyl), 23.0 (CH₃), 23.5 (CH₂), 24.8 (CH₂), 28.0 (CH₂), 30.7 (CH₂), 30.88 (CH₂), 30.93 (CH₂), 31.0 (CH₂), 32.0 (CH₂), 34.2 (CH), 35.0 (C), 35.3 (CH), 36.4 (CH), 37.8 (CH), 39.5 (CH₂), 42.7 (C), 42.9 (CH₂), 50.4 (CH), 51.5 (OCH₃), 55.7 (CH), 56.9 (CH), 71.3 (CH), 111.1 (=C), 122.7 (ArCH, triazole), 140.2 (=CH), 141.6 (Cipso, triazole), 150.8 (NC=ON), 163.9 (NC=O),170.1 (OC=O, acetyl), 174.6 (OC=O). FT-IR/ATR v_{max} cm⁻¹: 4848, 2930, 1679, 1436, 1373, 1244, 1018. HRMS (ESI-TOF) calculated for $C_{35}H_{51}N_5O_6$ + H⁺: 638.3912; Found: 638.3910.

(3*S*,5*S*,7*R*,10*S*,12*S*,13*R*,17*R*)-17-((*R*)-5-methoxy-5-oxopentan-2-yl)-10,13dimethyl-3-(4-((5-methyl-2,4-dioxo-3,4-dihydropyrimidin-1(2*H*)-yl)methyl)-1*H*-1,2,3-triazol-1-yl)hexadecahydro-1*H*-cyclopenta[*a*]phenanthrene-7,12-diyl diacetate (5f).

White solid, yield 90%, mp = 96-99°C , $[\alpha]^{25}_{D}$ = +35.42 (*c* 0.1, CHCl₃).

NMR ¹H (500 MHz, CDCl₃): δ = 0.73 (s, 3H, CH₃), 0.81 (d, J = 6.5 Hz, 3H, CH₃), 0.90 (s, 3H, CH₃), 1.09-1.21 (m, 2H, CH₂), 1.24-1.47 (m, 4H, CH₂, CH), 1.53-1.70 (m, 6H, CH₂, CH), 1.72-1.87 (m, 5H, CH₂, CH), 1.90 (d, 3H, J = 1.2 Hz, CH₃), 1.95-2.08 (m, 2H, CH₂, CH), 2.10 (s, 3H, CH₃, acetyl), 2.11-2.13 (m, 2H, CH₂), 2.14 (s, 3H, CH₃, acetyl), 2.18-2.24 (m, 1H, CH₂), 2.32-2.38 (m, 1H, CH₂), 2.34 (ddd, J = 14.0, 10.0, J = 14.0, J = 14.0,5.0 Hz, 1H, CH₂), 2.59 (td, J = 14.0, 4.0 Hz, 1H, CH₂), 3.66 (s, 3H, OCH₃), 4.60 (m, 1H, CH), 4.94 (s, 2H, CH), 4.95 (m,1H, CH), 5.10 (dd, J = 2.3, 2.3 Hz, 1H, CH), 7.35 (q, J = 1.2 Hz, 1H, =CH), 7.69 (s, 1H, ArH, triazole), 8.58 (brs, 1H, NH). NMR ¹³C $(CDCI_3, 125.7 \text{ MHz})$: $\delta = 12.2 (CH_3), 12.3 (CH_3, thymine), 17.5 (CH_3), 21.4 (CH_3, CH_3), 21.4 (CH_3), 21.4 (CH_3, CH_3), 21.4 (CH_3), 21.4 (CH_3),$ acetyl), 21.6 (CH₃, acetyl), 22.8 (CH₃, CH₂), 24.7 (CH₂), 25.7 (CH₂), 27.2 (CH₂), 29.0 (CH), 30.3 (CH₂), 30.77 (CH₂), 30.81 (CH₂), 30.9 (CH₂), 31.9 (CH₂), 34.5 (C), 34.6 (CH), 36.2 (CH), 37.7 (CH), 42.8 (C), 43.3 (CH), 45.1 (C), 47.4 (CH), 51.5 (OCH₃), 56.7 (CH), 70.8 (CH), 75.4 (CH), 111.1 (=C), 122.6 (ArCH, triazole), 140.2 (=CH), 141.6 (C_{ipso}, triazole), 150.7 (NC=ON), 163.8 (NC=O), 170.1 (OC=O, acetyl), 170.4 (OC=O, acetyl), 174.5 (OC=O). FT-IR/ATR v_{max} cm⁻¹: 4920, 2926, 1682, 1446, 1375, 1242, 1025.HRMS (ESI-TOF) calculated for C₃₇H₅₃N₅O₈ + H⁺: 696.3967; Found: 696.3964.

- 1.7832

4. ¹H and ¹³C NMR spectra for 1,2,3 triazoles

¹H NMR and ¹³C NMR for compound 3a

¹H NMR and ¹³C NMR for compound 3b

¹H NMR and ¹³C NMR for compound 3c

¹H NMR and ¹³C NMR for compound 3d

¹H NMR and ¹³C NMR for compound 3e

Supporting Information

¹H NMR and ¹³C NMR for compound 3f

¹H NMR and ¹³C NMR for compound 3g

Supporting Information

Supporting Information

¹H NMR and ¹³C NMR for compound 5d

¹H NMR and ¹³C NMR for compound 5f

5. References

- G. E. Negrón-Silva, R. González-Olvera, D. Angeles-Beltrán, N. Maldonado-Carmona, A. Espinoza-Vázquez, M. E. Palomar-Pardavé, M. A. Romero-Romo, R. Santillan, *Molecules*, 2013, 18, 4613.
- 2. R. González-Olvera, A. Espinoza-Vázquez, G.E. Negrón-Silva, M. E. Palomar-Pardavé, M. A. Romero-Romo, R. Santillan, *Molecules*, 2013, **18**, 15064.
- 3. J. Zhang, H. Wang, H. Pi, H. Ruan, P. Zhang, J. Wu, *Steroids*, 2009, **74**, 424.
- 4. V. S. Pore, N. G. Aher, M. Kumar, P.K. Shukla, *Tetrahedron*, 2006, **62**, 11178.
- 5. P. V. Chavan, K. S. Pandit, U. V. Desai, M. A. Kulkarni, P. P., *RSC Adv.*, 2014, 4, 42137.
- 6. Z. Gonda, Z. Novák, *Dalton Trans.*, 2010, **39**, 726.